ON MODIFIED BOREL METHODS

DIETER GAIER

1. Introduction. Given a series \(\sum a_n \) with partial sums \(s_n \) it is possible to associate with it the Borel transforms

\[
B(x; s_k) = e^{-x} \sum \frac{s_k x^k}{k!}, \quad B'(x; s_k) = \int_0^x e^{-t} a(t) dt, \quad a(t) = \sum \frac{a_k t^k}{k!}
\]

for \(x > 0 \). One says that \(B\)-lim \(s_n = s \) \(\Rightarrow B'\)-lim \(s_n = s \) if \(\lim_{x \to \infty} B(x; s_k) = s \) \(\Rightarrow \lim_{x \to \infty} B'(x; s_k) = s \). The relations between these Borel methods \(B, B' \), and their behavior under change of index are known \([8, p. 183; 6; 7]\).

Following a suggestion of R. P. Boas, Jr., we intend to study in this paper the modified Borel methods which arise when the continuous variable \(x \) in (1.1) is replaced by the discrete sequence of integers \(n = 1, 2, \cdots \). The resulting methods shall be denoted by \(B_I \) and \(B'_I \), and our interest is to discuss the relations among the methods \(B, B_I, B', B'_I \) (which is done in §3) and the behavior of these methods under change of index (cf. §4). The methods \(B_I, B'_I \) show certain abnormalities in comparison with \(B, B' \). For example, \(B\)-lim \(s_n = s \) always implies \(B'\)-lim \(s_n = s \), whereas \(B_I\)-lim \(s_n = s \) implies \(B'_I\)-lim \(s_n = s \) if \(a_n = O(K^n) \) for \(K < (\pi^2 + 1)^{1/2} \) and not for \(K = (\pi^2 + 1)^{1/2} \).

Our results are based on two theorems on entire functions (§2). The first allows one to infer \(f(x) \to s \) \([x \to + \infty] \) from \(f(n) \to s \) \((n = 1, 2, \cdots) \) if the type of \(f(z) \) is less than \(\pi \), and is well known; the second allows one to infer \(f(x) \equiv s e^x \) \([x \to + \infty] \) from \(f(n) \equiv s e^n \) \((n = 1, 2, \cdots) \) if the type of \(f(z) \) is less than \((\pi^2 + 1)^{1/2} \).

Finally, in §5 Cesàro-Borel methods are considered but the results there are incomplete, whereas the results in §3 and §4 are in a certain sense best possible.

2. A theorem on functions of exponential type. If \(f(z) \) is regular in the angle \(|\arg z| \leq \alpha (\alpha > 0) \), it is said to be there of exponential type \(\tau \) if for every \(\epsilon > 0 \), but for no \(\epsilon < 0 \), there exists a constant \(M(\epsilon) \) such that

\[
|f(z)| \leq M(\epsilon) e^{(\tau + \epsilon)|z|} \quad (|\arg z| \leq \alpha).
\]

The growth of \(f(z) \) along the ray \(\arg z = \phi \) \((|\phi| \leq \alpha) \) is described by the indicator function

Received by the editors January 14, 1955.
$$h_f(\phi) = \limsup_{r \to \infty} r^{-1} \log |f(re^{i\phi})|.$$

In §3 and §4 we meet the problem of going from the behavior of $f(n)$ ($n = 1, 2, \cdots$) to the behavior of $f(x)$ ($x \to +\infty$). A well known theorem in this direction is\footnote{Theorem 1 is implicitly contained in Cartwright [2], explicitly in Macintyre [9, p. 16]. See also Pfuger [12, pp. 312–314], Duffin-Schaefffer [5, pp. 142–143] and Boas [1, p. 180].}

Theorem 1. If $f(z)$ is regular and of exponential type in $|\arg z| \leq \alpha \leq \pi/2$ ($\alpha > 0$), and if

$$h_f(\pm \alpha) < \pi \sin \alpha,$$

then $f(n) \to 1$ ($n = 1, 2, \cdots$) implies $f(x) \to 1$ ($x \to +\infty$).

For our purposes we need an extension of Theorem 1 covering the case $f(n) \equiv e^n$ instead of $f(n) \to 1$.

Theorem 2. If $f(z)$ is regular and of exponential type in $|\arg z| \leq \alpha \leq \pi/2$ ($\alpha > 0$), and if

$$(2.1) \quad h_f(\pm \alpha) < \pi \sin \alpha + a \cos \alpha \quad (a \geq 0),$$

then

$$(2.2) \quad f(n) \equiv n^k e^{an} \ (n = 1, 2, \cdots) \text{ implies } f(x) \equiv x^k e^{ax} \ (x \to +\infty) \ (k \geq 0).$$

In particular, (2.2) is true if $f(z)$ is regular and of exponential type $\tau < (\pi^2 + a^2)^{1/2}$ in $\Re(z) \geq 0$; for $\tau = (\pi^2 + a^2)^{1/2}$ this is false.

Proof. Consider $g(z) = f(z)e^{-az}(z+1)^{-k}$ in $|\arg z| \leq \alpha$, where $(z+1)^k$ is assumed to be >0 for $z \geq 0$. For the indicator function of $g(z)$ on $\arg z = \pm \alpha$ we have

$$h_g(\pm \alpha) = \limsup_{r \to \infty} r^{-1} \log |g(re^{\pm i\alpha})|$$

$$= \limsup_{r \to \infty} r^{-1} \log |f(re^{\pm i\alpha})| - a \cos \alpha < \pi \sin \alpha$$

by (2.1), and hence, by Theorem 1, $g(n) \to 1$ ($n = 1, 2, \cdots$) implies $g(x) \to 1$ ($x \to +\infty$).

If, in particular, $f(z)$ is of exponential type $\tau < (\pi^2 + a^2)^{1/2}$ in $\Re(z) \geq 0$, we choose α such that $\tan \alpha = \pi/a$, so that

$$\pi \sin \alpha + a \cos \alpha = \pi/\sin \alpha = (\pi^2 + a^2)^{1/2} > \tau \geq h_f(\pm \alpha),$$

i.e. hypothesis (2.1) is fulfilled and hence (2.2) follows.

For the last part of the theorem consider $f(z) = e^{az}(\sin \pi z + 1)$.
3. Relations between the Borel methods. Now we are going to consider the methods of summability which associate with a given series the following transformations:

\[B: \quad e^{-z} \sum \frac{s_k x^k}{k!} (x > 0); \quad B': \quad \int_0^z e^{-t} a(t) dt (x > 0); \]

\[a(t) = \sum \frac{a_k t^k}{k!}, \]

\[B_I: \quad e^{-z} \sum \frac{s_k n^k}{k!} (n = 1, 2, \cdots); \quad B'_I: \quad \int_0^z e^{-t} a(t) dt (n = 1, 2, \cdots). \]

The \(B \)- and \(B' \)-transformations are connected by the formal relation (Hardy \cite{8}, p. 182) \[B(x; s_k) = B(x; a_k) + B'(x; s_k), \]

\[(3.1) \quad \sum \frac{s_k x^k}{k!} = \sum \frac{a_k x^k}{k!} + \int_0^z e^{-t} a(t) dt. \]

The problem of this paragraph is to investigate the relative strength of the above Borel methods. For two summability methods \(V_1 \) and \(V_2 \) we use the notation \(V_1 \rightarrow V_2 \), if \(V_1 \)-lim \(s_n = s \) implies always \(V_2 \)-lim \(s_n = s \).

The following relations are trivial or known.

\((3.2) B \rightarrow B_I \) and \(B' \rightarrow B'_I \).

\((3.3) B \rightarrow B' \) (Hardy \cite{8}, p. 183). \[B(x; s_k) = B(x; a_k) + B'(x; s_k), \]

\((3.4) B' \rightarrow B \) if \(a_n = O(K^n) \) for some \(K > 0 \) (Gaier \cite{6}, p. 455). This becomes false if \(a_n = O(K^n) \) is replaced by \(a_n = O(n^n K^n) \) (\(e \) arbitrary >0) (Gaier \cite{7}).

Our new results about the relations between the Borel methods are summarized in

Theorem 3. (1) \(B_I \rightarrow B \), \(B_I \rightarrow B' \), and \(B_I \rightarrow B'_I \), if \(a_n = O(K^n) \) for \(K < (\pi^2 + 1)^{1/2} \), but not for \(K = (\pi^2 + 1)^{1/2} \).

(2) \(B'_I \rightarrow B' \), \(B'_I \rightarrow B \), and \(B'_I \rightarrow B_I \), if \(a_n = O(K^n) \) for \(K < (\pi^2 + 1)^{1/2} \), but not for \(K = (\pi^2 + 1)^{1/2} \).

Note, in particular, that there is no analogy to (3.3) for the methods \(B_I \) and \(B'_I \).

Proof. (1) (a) \(B_I \rightarrow B \). (i) If \(a_n = O(K^n) \) \((K < (\pi^2 + 1)^{1/2}) \), then \(|s_n| \leq MK'^n \) \((K' < (\pi^2 + 1)^{1/2}) \) and the entire function \(\phi(z) = \sum s_n z^n / n! \) satisfies the estimation

\[|\phi(z)| \leq M \sum \frac{K'^n |z|^n}{n!} = Me^{K'|z|}, \]
i.e. it is of type $\tau < (\pi^2 + 1)^{1/2}$. Therefore the assumption $\phi(n) \leq A \cdot e^n$ ($n = 1, 2, \cdots$) implies, by Theorem 2, $\phi(x) \leq A \cdot e^x$ ($x \to +\infty$), i.e. B-lim $s_n = A$.

(ii) Define s_n by $\sum (s_n x^n / n!) = e^x (\sin \pi x + 1)$. Then $(\alpha) B_I$-lim $s_n = 1$, but not B-lim $s_n = 1$. (\beta) One finds immediately

$$s_n = 1 + (1/2i) \{(1 + i\pi)^n - (1 - i\pi)^n\},$$

so that $s_n = O((\pi^2 + 1)^{n/2})$ and also $a_n = O((\pi^2 + 1)^{n/2})$ are fulfilled.

(b) $B_I \to B'$. (i) The assumption about the a_n implies (Case (a) and (3.3))

$$B_I \to B \to B'.$$

(ii) Define a_n by

$$\int_0^1 e^{-t a(t)} dt = \sin (\pi z + \alpha); \quad t\alpha = -\pi.$$

Then (α) B_I-lim $s_n = 0$. For, by the relation (3.1), we have

$$B(x; s_k) = \frac{d}{dx} \sin (\pi x + \alpha) + \sin (\pi x + \alpha),$$

which, taken at $x = n$ ($n = 1, 2, \cdots$), becomes

$$B(n; s_k) = \cos \pi n (\sin \alpha + \pi \cos \alpha) = 0 \quad (n = 1, 2, \cdots).$$

On the other hand B'_I-lim s_n does not exist. (\beta) We have

$$a(t) = e^t \cdot \pi \cos (\pi t + \alpha) = \sum \frac{a_k t^k}{k!},$$

from which $a_n = O((\pi^2 + 1)^{n/2})$ is immediate.

(2) (a) $B'_I \to B'$. (i) If $a_n = O(K^n)$ ($K < (\pi^2 + 1)^{1/2}$), then $a(t)$ is an entire function of exponential type $\tau < (\pi^2 + 1)^{1/2}$. If therefore $g(z) = e^{-i\alpha} g(z)$, we have for the indicator function of $g(z)$ taken for the rays $\arg z = \pm \alpha$ ($t\alpha = \pi$)

$$h_0(\pm \alpha) = h_0(\pm \alpha) - \cos \alpha < (\pi^2 + 1)^{1/2} - \cos \alpha = \pi \sin \alpha,$$
and hence for the function $\phi(z) = \int_0^z e^{-t^a(t)} dt$

$$h_\phi(\pm \alpha) < \pi \sin \alpha,$$

so that an application of Theorem 1 infers $\phi(x) \to A(x \to +\infty)$ from $\phi(n) \to A (n = 1, 2, \cdots)$.

(ii) Define a_n by $\int_0^z e^{-t^a(t)} dt = \sin \pi z$. Obviously $B'_f -\lim s_n = 0$, but not $B' -\lim s_n = 0$. The validity of $a_n = O((\pi^2 + 1)^n/2)$ is again immediate.

(b) $B'_f \to B$. (i) The assumption about the a_n implies (Case (a) and (3.4))

$$B'_f \to B' \to B.$$

(ii) Define a_n as in (2) (a). B-lim $s_n = 0$ cannot hold since $B' -\lim s_n$ does not exist.

(c) $B_I \to B_I$. (i) By the preceding case $B'_f \to B \to B_I$.

(ii) Define a_n as in (2) (a). By (3.1), the B-transform of the corresponding sequence s_n is $\sin \pi x + \pi \cos \pi x$, so that $B_I(n; s_k) = \pm \pi (n = 1, 2, \cdots)$.

4. On the change of index for the methods B_I and B'_f. We consider the two series

$$\sum a_k = a_0 + a_1 + a_2 + \cdots$$

with partial sums s_n and

$$\sum b_k = 0 + a_0 + a_1 + \cdots$$

with partial sums t_n.

The problem is to determine under what conditions

(4.1.a) $V\text{-lim } s_n = s$ implies $V\text{-lim } t_n = s$

or

(4.1.b) $V\text{-lim } t_n = s$ implies $V\text{-lim } s_n = s$,

where V is one of the methods B_I, B'_f.

Note that $B(x; b_k) = (d/dx)B'(x; t_k)$. The proof of (4.3) follows from

$$B'(x; t_k) = \int_0^x e^{-t b(t)} dt = - e^{-t b(t)} \bigg|_0^x + \int_0^x e^{-t a(t)} dt = - B(x; b_k) + B'(x; s_k).$$

Theorem 4. If V is one of the methods B_1, B_1', both statements (4.1.a) and (4.1.b) are correct if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$.

Note, in particular, that there is no analogy to the fact that (4.1.a) holds for $V = B$ without restriction of the a_n.

Proof. (1) $V = B_1$. (a) By (4.2), B_1-lim $t_n = s$ if and only if B_1'-lim $s_n = s$, which follows from B_1-lim $s_n = s$ if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$ (Theorem 3, 1c).

(b) Again, B_1-lim $t_n = s$ if and only if B_1'-lim $s_n = s$, which implies B_1-lim $s_n = s$ if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$ (Theorem 3, 2c).

(2) $V = B_1'$. (a) (i) If $a_n = O(K^n)(K < (\pi^2 + 1)^{1/2})$, B_1'-lim $s_n = s$ implies B_1'-lim $s_n = s$ so that by (4.3) $\phi(x) + \phi'(x) \rightarrow s(x \rightarrow + \infty)$ $[\phi'(x) = B(x; b_k)]$, and consequently (Hardy [8, p. 107]) $\phi(x) \rightarrow s(x \rightarrow + \infty)$, i.e. B_1'-lim $t_n = s$.

(ii) Define b_n by $\int_0^b e^{-t b(t)} dt = \sin (\pi x + \alpha)$ with $tg\alpha = - \pi$ and proceed as in Theorem 3, 1(c) (ii). We get B_1'-lim $s_n = 0$ whereas B_1'-lim t_n does not exist, although $a_n = O((\pi^2 + 1)^{1/2})$.

(b) (i) If $a_n = O(K^n)(K < (\pi^2 + 1)^{1/2})$, B_1'-lim $t_n = s$ implies B_1'-lim $t_n = s$ (Theorem 2), and since $B'(z; t_k)$ is an entire function of exponential type tending to s as $z \rightarrow + \infty$, its derivative $e^{-t b'(z)} = B'(z; b_k)$ tends to zero as $z \rightarrow + \infty$ (Boas [1, p. 212] and Gaier [6, p. 454]) which, by (4.3), implies B_1'-lim $s_n = s$.

(ii) Define b_n by $\int_0^b e^{-t b(t)} dt = \sin \pi x$. Then B_1'-lim $t_n = 0$, but not B_1'-lim $s_n = 0$, although $a_n = O((\pi^2 + 1)^{n/2})$.

5. Cesàro-Borel methods. Doetsch [3] was the first to consider the Cesàro-Borel transform

$$C_k B(x; s_k) = k x^{-k} \int_0^x B(t; s_k)(x-t)^{k-1} dt \quad (k > 0, x \geq 0),$$

and in view of our results in §3 one can ask what relations there are

* Let $b(t) = \sum (b_n t^n / n!)$, so that $b'(t) = a(t)$. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for example between the methods C_kB and C_kB_I ($C_k =$ matrix method in the latter case). It is not surprising that in general

$$\text{(5.1)} \quad C_kB_I\text{-lim } s_n = s \text{ does not imply } C_kB\text{-lim } s_n = s;$$

however, also

$$\text{(5.2)} \quad C_kB\text{-lim } s_n = s \text{ does not imply } C_kB_I\text{-lim } s_n = s.$$

Equivalent to the problem raised is, of course, under what conditions for an entire function $f(z)$ does

$$C_k\text{-lim } f(n) = s \text{ imply } C_k\text{-lim } f(x) = s$$

and conversely. For $k = 1$ the statement (5.1) follows from consideration of $f(z) = z \sin \pi z$, whereas for the proof of (5.2) we take an entire function $f(z)$ of exponential type $(< 2\pi + \epsilon)$ which is, for $x > 0$,

$$f(x) = x^{1/2} \cos 2\pi x + o(1).$$

Then obviously $C_1\text{-lim } f(n) = +\infty$, but $C_1\text{-lim } f(x) = 0$. The author has no contribution towards the solution of this problem.

References

Technische Hochschule, Stuttgart

Note: To obtain such a function apply Macintyre's lemma [1, p. 80] to $f(z) = z^{1/8} \cdot \cos 2\pi z; f(z/2 + \epsilon)$ is of type $< \pi$ in $\Re(z) \geq 0$. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use