The zeros of quasianalytic functions
Author:
Arthur O. Garder
Journal:
Proc. Amer. Math. Soc. 6 (1955), 929941
MSC:
Primary 27.2X
MathSciNet review:
0077595
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
I.
I. Hirschman Jr., On the behaviour of Fourier transforms at
infinity and on quasianalytic classes of functions, Amer. J. Math.
72 (1950), 200–213. MR 0032816
(11,350f)
 [2]
I.
I. Hirschman Jr., On the distributions of the zeros of functions
belonging to certain quasianalytic classes, Amer. J. Math.
72 (1950), 396–406. MR 0034419
(11,583e)
 [3]
I.
I. Hirschman Jr. and D.
V. Widder, The inversion of a general class of
convolution transforms, Trans. Amer. Math.
Soc. 66 (1949),
135–201. MR 0032817
(11,350g), http://dx.doi.org/10.1090/S00029947194900328174
 [4]
A.
Kolmogoroff, On inequalities between the upper bounds of the
successive derivatives of an arbitrary function on an infinite
interval, Amer. Math. Soc. Translation 1949 (1949),
no. 4, 19. MR 0031009
(11,86d)
 [5]
S.
Mandelbrojt, Analytic functions and classes of infinitely
differentiable functions, Rice Inst. Pamphlet 29
(1942), no. 1, 142. MR 0006354
(3,292d)
 [6]
E. C. Titchmarsh, The theory of functions, 2d ed., Oxford, 1939.
 [7]
, Introduction to the theory of Fourier integrals, Oxford, 1948.
 [8]
I.
I. Hirschman and D.
V. Widder, The convolution transform, Princeton University
Press, Princeton, N. J., 1955. MR 0073746
(17,479c)
 [1]
 I. I. Hirschman, On the behaviour of Fourier transforms at infinity and on quasianalytic classes of functions, Amer. J. Math. vol. 72 (1950) pp. 200213. MR 0032816 (11:350f)
 [2]
 , On the distribution of the zeros of functions belonging to certain quasianalytic classes, Amer. J. Math. vol. 72 (1950) pp. 396406. MR 0034419 (11:583e)
 [3]
 I. I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. vol. 66 (1949) pp. 135201. MR 0032817 (11:350g)
 [4]
 A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, no. 4, 1949. MR 0031009 (11:86d)
 [5]
 S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, The Rice Institute Pamphlet vol. 29 (1942) pp. 1142. MR 0006354 (3:292d)
 [6]
 E. C. Titchmarsh, The theory of functions, 2d ed., Oxford, 1939.
 [7]
 , Introduction to the theory of Fourier integrals, Oxford, 1948.
 [8]
 D. V. Widder and I. I. Hirschman, The convolution transform, Princeton, 1955. MR 0073746 (17:479c)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
27.2X
Retrieve articles in all journals
with MSC:
27.2X
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939195500775956
PII:
S 00029939(1955)00775956
Article copyright:
© Copyright 1955
American Mathematical Society
