CHAIN HOMOTOPIE AND THE de RHAM THEORY

V. K. A. M. GUGENHEIM AND D. C. SPENCER

Introduction. This note contains a method for constructing chain-homotopy operators suitable for the de Rham cohomology theory. In particular, it is proved that differentiably homotopic maps induce chain homotopic chain-mappings in the exterior algebra of differential forms (Formula 13 below; cf. pp. 80–81 of [1], where the same formula is obtained). This shows that the de Rham theory satisfies the "homotopy axiom" in the sense of S. Eilenberg and N. E. Steenrod (cf. [2]); hence the de Rham cohomology groups of a differentiably contractible manifold are trivial. This fundamental result is often referred to as the "Poincaré Lemma."

A simple generalization is given in the case of an almost product structure.

Almost complex and complex structures are investigated in §5; no genuine chain-homotopies are obtained, and in §6 is given an example which shows that $\bar{\partial}$-cohomology does not satisfy the homotopy axiom, even in the case of complex manifolds and analytic homotopies; this example is due to Professor K. Kodaira.

1. Definitions and notations. By "manifold" we mean "differentiable manifold of class $C^\infty," by "map," "map of class $C^\infty," etc.; and all notions such as tangent vector or differential form will be taken in their C^∞-sense. Tangent vectors will always be taken to have been defined by the C^∞-analogue of the definition given in §IV, Chap. II of [10].

If U is a manifold, we denote by $T^1(U)$ the tangent bundle, by $T(U) = \bigoplus_{p=0}^\infty T^p(U)$ the bundle of exterior algebras of tangent vectors. Note that $T^0(U) = \mathbb{R}$ = the reals. By $\Phi(U) = \bigoplus_{p=0}^\infty \Phi^p(U)$ we denote the exterior algebra of differential forms; for our purposes, the most convenient definition is

\begin{equation}
\Phi^p(U) = \text{Hom}_{R(U)}[\times T^p(U), R(U)]
\end{equation}

where $R(U) = \Phi^0(U) = R$-module of C^∞-maps $U \to R$, and $\times T^p(U)$ denotes the $R(U)$-module of cross-sections of $T^p(U)$. \{If Λ is a commutative ring and A, B are Λ-modules, $\text{Hom}_\Lambda(A, B)$ denotes the Λ-module of Λ-homomorphisms $A \to B$.\}

If $v, v' \subseteq \times T^p(U)$ are such that $v|_V = v'|_V$ ($v = v'$ "on $V"$) where V
is some open set of U, it is easy to see that $\phi v = \phi v'$ on V for $\phi \in \Phi^p(U)$. Hence the definition of $\Phi^p(U)$ is a "local" one; and $\phi \in \Phi^p(U)$ can be given by giving its values on germs of cross-section; a germ of cross-section at $x \in U$ is the equivalence class of all cross-sections which agree (pairwise) in some neighborhood of x.

If $\phi \in \Phi^{p+q}(U)$ and $v \in \times T^p(U)$ we define the contraction $v \rhd \phi \in \Phi^{q}(U)$ by

$$(v \rhd \phi)v' = \phi(v \wedge v')$$

where $v' \in \times T^*(U)$.

The exterior derivative $d: \Phi^p \to \Phi^{p+1}$ is given by the formula

$$(d\phi)(v_1 \wedge \cdots \wedge v_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} v_i (\phi(v_1 \wedge \cdots \hat{v}_i \cdots \wedge v_{p+1}))$$

$$+ \sum_{i<j} (-1)^{i+j+1} [v_i, v_j] \wedge v_1 \wedge \cdots \hat{v}_i \cdots \hat{v}_j \wedge v_{p+1}$$

where the v_i are germs of $\times T^1(U)$, $\phi \in \Phi^p(U)$, $[v_i, v_j] = v_i v_j - v_j v_i$ and $\cdots \hat{v}_i \cdots$ denotes the omission of the term with index i. The following will be useful:

Lemma 1. The homomorphism d is uniquely characterized by:

(i) If $\phi \in \Phi^0(U), v \in \times T^1(U)$, $(d\phi)v = v \phi$,

(ii) If $\phi \in \Phi^0(U)$, $d^2 \phi = 0$,

(iii) if $\phi \in \Phi^p(U), \psi \in \Phi(U), d(\phi \wedge \psi) = d\phi \wedge \psi + (-1)^p \phi \wedge d\psi$.

Since locally $\Phi^1(U)$ is (isomorphic to) the Grassmann algebra generated by $\Phi^1(U)$ regarded as an $R(U)$-module, (ii) and (iii) imply (ii'):

$$d^2 = 0.$$

If U, V are manifolds, and $f: U \to V$ is a map, we denote by $f_*: T^1(U) \to T^1(V)$ the corresponding induced maps.

If c is a differentiable (i.e., C^∞) p-chain in U and $\phi \in \Phi^p(U)$, we shall write $\phi \cdot c = f_* \phi$. Stokes's theorem then takes the form $(d\phi) \cdot c = \phi \cdot b c$, where b denotes the boundary operator of the singular theory.

2. Almost product structure. We say that the manifold U has almost product structure (P, Q) if there are homomorphisms $P, Q: T^1(U) \to T^1(U)$ such that $T^1(U) = PT^1(U) \oplus QT^1(U)$ (direct sum). Thus for $v \in T^1(U)$, $v = Pv + Qv$ and hence if $v_i \in T^1(U)$ ($i = 1, \cdots , p$), then $v_1 \wedge \cdots \wedge v_p$ is a sum of terms each of which is the exterior

2 More accurately: $\Phi(V)$ is the Grassmann algebra generated by $\Phi^1(V)$ for sufficiently small neighbourhoods $V \subset U$.

3 For fibre bundles the fibres of which are modules, a homomorphism is a fibre-preserving map which, restricted to any fibre, is a homomorphism in the algebraic sense.
product of \(r \) vectors of type \(P_{\nu} \), by \(s \) vectors of type \(Q_{\nu} \) where \(r+s=p \); for given \(r, s \) such a term is called a vector of "type \((r, s)\)"; and this process defines a unique projection operator

\[
\prod_{r,s}^*: T^{r+s}(U) \rightarrow T^{r+s}(U)
\]

onto the submodule of vectors of type \((r, s)\).

We then define projection operators \(\prod_{r,s}^*: \Phi^{r+s}(U) \rightarrow \Phi^{r+s}(U) \) by

\[
\prod_{r,s}^* \phi = \prod_{r,s}^* \phi
\]

If \(\phi = \prod_{r,s}^* \phi \) we say that \(\phi \) is of type \((r, s)\) (cf. [8]).

Let \(U, V \) be manifolds with almost product structures \((P, Q), (\overline{P}, \overline{Q})\) respectively. A map \(F: U \rightarrow V \) is said to be of type \((l, m)\) (in relation to these structures) if

\[
\prod_{l+m}^* F_* = F_* \prod_{r,s}^*.
\]

A map of type \((0, 0)\) is said to be admissible; the same definitions apply to any homomorphisms \(T(U) \rightarrow T(V) \) or \(\Phi(U) \rightarrow \Phi(U) \).

An examination of formula (2) shows that \(d = d_2 + d_1 + d_1' + d_2' \) where \(d_2, d_1, d_1', d_2' \) are of types \((2, -1), (1, 0), (0, 1), (-1, 2)\) respectively. \(d_2 = 0 \) leads to the following identities:

\[
d_2^2 = d_2 d_1' + d_1 d_2' = d_2 d_1'' + (d_1')^2 + d_1' d_2' \\
\]

\[
(3) \quad d_1^2 = d_1 d_1' + d_1 d_1'' + d_1' d_1 + d_1'' d_1 \\
= d_1' d_1'' + d_1' d_1'' + d_1' d_1 + d_1'' d_1 \\
= d_1' d_1'' + d_1' d_1'' = d_1' d_1' + (d_1')^2 + d_1' d_1' = (d_1')^2 = 0.
\]

In analogy to Lemma 1, we now define the \(R(U) \)-homomorphism \(d_P: \Phi^p(U) \rightarrow \Phi^{p+1}(U) \) by

(i) If \(\phi \in \Phi^p(U) \) and \(v \in T^1(U) \), then

\[
(d_P \phi)v = (Pv)\phi.
\]

(ii) If \(\phi \in \Phi^p(U) \), \((d_P d + dd_P) \phi = 0 \).

(iii) If \(\phi \in \Phi^p(U) \) and \(\psi \in \Phi(U) \),

\[
d_P (\phi \wedge \psi) = d_P \phi \wedge \psi + (-1)^r \phi \wedge d_P \psi.
\]

It easily follows that

\[
(d_P d + dd_P) = 0.
\]

It is easily verified that \(2d_2 + d_1 - d_2' \) satisfies these conditions; whence

\[
d_P = 2d_2 + d_1 - d_2'.
\]

Writing also

\[
d_Q = 2d_2' + d_1' - d_2',
\]
we see that \(d = d_P + d_Q \) and, by symmetry, that \(d_Q \) is related to \(Q \) as \(d_P \) is to \(P \).

Using (3), (4), we see that \(d_P^2 = d_1^2 + 2(d_1'd_1' + d_1''d_1') + d_1''^2 \). Hence, noting \(d|\Phi^0(U) = d_1' + d_1'' \) and appealing to Lemma 1, we have

Lemma 2. \(d_P^2 = 0 \) if and only if \(d = d_1' + d_1'' \); i.e., \(d_1' = d_1'' = 0 \); i.e., \(d_P = d_1' \), \(d_Q = d_1'' \).

It is not hard to prove that the conditions of Lemma 2 are equivalent to the "integrability" of the given almost product structure in which case we have a local product structure.

3. The / operation. Let \(U, V \) be manifolds. An obvious almost product structure is defined on \(U \times V \) by regarding \(P, Q \) as the (natural) projection operators associated with the direct sum decomposition \(T^i(U \times V) = T^i(U) \oplus T^i(V) \). We shall thus regard vector fields in \(U, V \) as lying, in an evident manner, in \(U \times V \). It is clear that the conditions of Lemma 2 pertain; we write \(d_U = d_P, d_V = d_Q \). \(d_U \) corresponds to "differentiation in \(U \) only."

Now, let \(\phi \in \Phi^{r+1}(U \times V) \) and let \(c \) be a singular \(r \)-chain in \(U \). Then (using a notation due to N. E. Steenrod, cf. [3]) we define \(\phi/c \in \Phi^r(V) \) by

\[
(\phi/c)(y) = (-1)^r [j^*_\nu(y \downarrow_\phi)] \cdot c
\]

where \(v \in T^*(V), y \in V \) and \(j_\nu: U \to U \times V \) is the map \(x \mapsto (x, y) \). Then, as is easily seen,

\[
(-1)^r d(\phi/c) = (-1)^{r+1} d_V \phi/c
\]

\[
= (-1)^{r+1} [d\phi/c - d_U \phi/c].
\]

Also, if \(v' \in T^{r+1}(V) \) we have

\[
(-1)^{r+1} (d_U \phi/c)(v')(y) = j^*_\nu(v' \downarrow_\phi) \cdot c
\]

\[
= (-1)^{r+1} [d_j^*_\psi(v' \downarrow_\phi)] \cdot c = (-1)^{r+1} j^*_\psi(v' \downarrow_\phi) \cdot bc
\]

Hence

\[
d\phi/c - \phi/bc = (-1)^r d(\phi/c)
\]

(cf. 2.9 in [3]).

Now assume that \(V \) has almost product structure \((P, Q) \) and that \(U = U_P \times U_Q \). Define an almost product structure \((\overline{P}, \overline{Q}) \) on \(U \times V = U_P \times U_Q \times V \) by

\[
\overline{P}T^i(U \times V) = T^i(U_P) \oplus PT^i(V),
\]

\[
\overline{Q}T^i(U \times V) = T^i(U_Q) \oplus QT^i(V).
\]
In this situation, formula (8) splits up into various components. We discuss one special case, namely that when \(c = c' \times x_0 \) where \(c' \) is an \(r \)-chain in \(U_F \) and \(x_0 \) is a point of \(U_Q \) regarded as a 0-chain. In this case the homomorphism \(\phi \rightarrow \phi/c \) is of type \((-r, 0)\) in relation to the almost product structures \((\overline{P}, \overline{Q})\), \((P, Q)\). By examining (8) in terms of its components we obtain:

\[
\begin{align*}
\delta_0 \phi/c &= (-1)^r \delta_0 \phi/c, \\
\delta_1 \phi/c &= (-1)^r \delta_1 \phi/c, \\
\delta_2 \phi/c &= (-1)^r \delta_2 \phi/c, \\
\delta_3 \phi/c &= (-1)^r \delta_3 \phi/c, \\
\delta_4 \phi/c &= (-1)^r \delta_4 \phi/c
\end{align*}
\]

(9)

from which, using (4) and (5), we obtain

\[
\begin{align*}
\delta_0 \phi/c - \phi/bc &= (-1)^r \delta_0 \phi/c, \\
\delta_0 \phi/c &= (-1)^r \delta_0 \phi/c.
\end{align*}
\]

(10)

4. Chain homotopies. Let us retain the notations of §3, let \(W \) be a third manifold and \(F: U \times V \rightarrow W \) a map. We define \(\lambda: \Phi(W) \rightarrow \Phi(V) \) by

\[
\lambda \psi = (-1)^{r+1}(F^* \psi)/c
\]

(11)

for \(\psi \in \Phi(W) \). Then, using (8) we get

\[
(d \lambda + (-1)^{r+1} \lambda d) \psi = (F^* \psi)/bc.
\]

(12)

Now, consider the case when \(c: I \rightarrow U \) is a singular 1-simplex and define \(f_t: V \rightarrow W \) by \(f_t(y) = F(c(t), y) \); then \(F \) represents a homotopy, and (12) becomes

\[
d \lambda + \lambda d = f_1^* - f_0^*
\]

(13)

showing that differentiably homotopic maps induce chain-homotopic homomorphisms.

Next, consider the almost product structures introduced in the second part of §3, and assume that \(F \) is admissible (in relation to these structures). The homomorphism \(\lambda \) defined by (11) in terms of an \(r \)-chain \(c \) “in \(U_F \)” will be denoted by \(\lambda_P \). Using (10), we get

\[
(d \lambda_P + (-1)^{r+1} \lambda_P d_F) \psi = F^* \psi/bc,
\]

(14)

\[
dQ \lambda_P + (-1)^{r+1} \lambda_P d_Q = 0
\]

and finally, in analogy to (13),

\[
d \lambda_P + \lambda_P d_F = f_1^* - f_0^*
\]

(15)

in other words: A homotopy consistent with a given almost product
structure induces chain-homotopies for the operator d_p; and similarly for d_q.

5. **Almost complex structure** (cf. [5; 6]). Let M be an m-manifold, and let $CT(M) = T(M) \otimes_R C$ where C are the complex numbers; and let $C(M) = C$-module of C^∞-maps $M \to C$. We define

$$C^p(M) = \text{Hom}_{C(M)}[\times CT^p(M), C(M)]$$

and $C(M) = \sum_{p=0}^\infty C^p(M)$; cf. (1). We also define $d: C^p(M) \to C^{p+1}(M)$ by the formal analogue of (2); the definitions of f_\ast, f^\ast are similarly extended. It is clear that the whole "complex" theory is analogous to the "real" theory; also, $C(M)$ is naturally isomorphic to $\mathcal{R}(M) \otimes_R C$, $C^p(M)$ to $\mathcal{R}^p(M) \otimes_R C$ and, under this isomorphism, d corresponds to $d \otimes 1$.

We say that M has a complex almost product structure if there are $C(M)$-homomorphisms $P, Q: CT^1(M) \to CT(M)$ such that $CT^1(M) = PCT^1(M) \oplus QCT^1(M)$, P, Q being projections. It is clear that the theory of almost product structures (§2 above) has an exact analogue in this situation: and we take over, without change, the definitions of I^s, Π^s_t, "type (r, s)," $d = d_p + d_q$, complete with Lemma 2.

We say that M has almost complex structure if it has complex almost product structure together with an isomorphism $k: CT^1(M) \to CT(M)$ such that $kPCT^1(M) = QCT^1(M)$, $kQCT^1(M) = PCT^1(M)$, $k^2 = 1$. Then k can be extended to $k: C(M) \to C(M)$ (and with a slight abuse of notation!) $k: C(F)(M) \to C(M)$. We write $kv = \bar{v}$, $k\phi = \bar{\phi}$. In this case, in accordance with the usual notation, we write $\partial, \bar{\partial}$ for d_p, d_q. If $\bar{\partial}^2 = 0$ (cf. Lemma 2) the given almost complex structure is called integrable (cf. [5]).

It is well known that if M has almost complex structure and n complex dimensions, then it can be assigned a Hermitian metric (cf. [4, p. 209]) and in terms of this a duality operator $\ast: C^p(M) \to C^{2n-p}(M)$ and a scalar product (ϕ, ψ) for $\psi, \phi \in C^p(M)$; cf [1; 5; 7; 8]. These operations satisfy

$$(\prod^\ast_{r,s} \phi, \psi) = (\phi, \prod^\ast_{r,s} \psi),$$

and also, writing $\delta = -\ast \partial \ast$,

$$(\phi, \delta \psi) = (\bar{\partial} \phi, \psi)$$

if ϕ, ψ are forms with compact carriers (cf. [5]). We define
(17) \[\Delta = 2(\partial \overline{\partial} + \overline{\partial} \partial). \]

Now, let \(U \) be a subdomain (i.e., an open set) of \(M \) such that the closure of \(U \) in \(M \) is compact. By \(\mathcal{L} \) denote the Hilbert space (in terms of the scalar product just introduced) of norm-finite differential forms on \(U \) and by \(\mathcal{J} \) the space of forms \(\phi \in C^\Phi(M) \) such that \(\overline{\partial} \phi = \partial \phi = 0 \) and \(\phi = 0 \) outside \(U \); then \(\mathcal{J} \) can be regarded as a subspace of \(\mathcal{L} \); we denote by \(F: \mathcal{L} \rightarrow \mathcal{J} \) the associated projection operator. There exists a "Green's operator" \(G: \mathcal{L} \rightarrow \mathcal{L} \) such that

(18) \[\Delta G \phi = \phi - F \phi \]

(cf. [5]).

Define \(H, J: \mathcal{L} \rightarrow \mathcal{L} \) by

(19) \[H = 2\partial (G - G \partial) + F, \]

\[J = 2\partial G. \]

If the structure is complex, \(\partial \overline{\partial} = 0 \), \(\partial \overline{\partial} = 0 \) and hence \(\partial \Delta = \overline{\partial} \overline{\partial}, \partial \Delta = \partial \partial; \) hence in this case \(\Delta H = 0 \). If \(U \) is a closed, compact manifold, \(\partial G - G \partial = 0 \) and \(H = F \).

In the case of complex euclidean \(n \)-space, it is trivial that there exists a Green's operator \(G \) satisfying \(\Delta G \phi = \phi \) and, if \(\phi \) has a compact support, \(\partial G \phi = \overline{\partial} G \phi \). Hence, if we assume that \(U \) is an arbitrary subdomain of complex euclidean space, then \(H \phi = 0 \) provided that the support of \(\phi \) is compact relative to \(U \).

As is easily verified,

(20) \[\partial J + J \partial = I - H. \]

Let \(V \) be another almost complex manifold; give to \(U \times V \) the natural induced almost complex structure; and by \(J_U, H_U, \partial_U \) denote the operators on \(C^\Phi(U \times V) \) associated with \(U \). Then, if \(\phi \) is some singular \(r \)-chain in \(U \), define \(L: C^\Phi(U \times V) \rightarrow C^\Phi(V) \) by

(21) \[L \phi = J_U \phi / c. \]

It is easily seen that

(22) \[(-1)^{r+1} \partial L + L \partial = L \partial_U \]

or, using (20),

(23) \[((-1)^{r+1} \partial L + L \partial) \phi = (I - H_U - \partial_U J_U) \phi / c. \]

Notice that, since there is no Stokes's formula in the geometrical sense for \(\partial \), no formula analogous to (8) can be obtained; similarly, no formulas analogous to (10) seem to exist, as singular chains cannot be closely related to almost complex structure.
In particular, if \(r = 0 \), \(\partial_U J_U / \epsilon = 0 \) and (23) becomes

\[
(- \bar{\partial} L + \partial \bar{\partial}) \phi = (I - H_U) \phi / \epsilon.
\]

Let \(W \) be a third almost complex manifold, \(F: U \times V \to W \) a map such that \(\partial F^* = F^* \bar{\partial} \), let \(c = u_1 - u_0 \) where \(u_0, u_1 \in U \), write \(f_j(v) = F(u_i, v) \), and \(\lambda = LF^*: C^j(W) \to C^j(V) \). Then, (24) gives

\[
(- \bar{\partial} L + \partial \bar{\partial}) \phi = (f_1^* - f_0^*) \phi - (H_U F^* \phi)_1 + (H_U F^* \phi)_0
\]

where \((H_U F^* \phi)_i = H_U F^* \phi | u_i \times V\).

If \(U \) is compact and connected, \(H_U = F_U \) where \(F_U \) is the projection onto the space of forms satisfying \(\partial_U \phi = \bar{\partial} \phi = 0 \), and \(\gamma^0_U \) (subspace of such forms of degree 0) is isomorphic to \(C \); then \((H_U F^* \phi)_i = (H_U F^* \phi)_0 \) and (25) becomes

\[
- \bar{\partial} \lambda + \lambda \partial = f_1^* - f_0^*.
\]

6. **An example** (cf. the Introduction). Let \(G \) be the multiplicative group consisting of matrices of the form

\[
z = \begin{bmatrix}
1 & z_1 & z_2 \\
0 & 1 & z_3 \\
0 & 0 & 1
\end{bmatrix}
\]

where \(z_i \in C \); let \(D \) be the (discrete) subgroup consisting of all \(z \) such that \(z_i \) are Gaussian integers. Then \(V = G / D \) (i.e., the space of right cosets \(z \cdot D \)) is a homogeneous compact complex manifold (which was first considered by Iwasawa). It is easily seen that (in classical notation) the holomorphic 1-forms

\[
w_1 = dz_1, \quad w_2 = dz_2 - z_3 dz_1, \quad w_3 = dz_3
\]

are right invariant on \(G \); they can hence be regarded as holomorphic 1-forms on \(V \). Further, it is not hard to verify that \(w_1, w_2, w_3 \) generate the \(\partial \)-homology group \(H^{1,0}_\partial(V) \) of forms of type \((1, 0)\). Hence

\[
\dim H^{1,0}_\partial(V) = 3.
\]

By the duality theorem of Kodaira-Serre (cf. [9; 11])

\[
\dim H^{2,3}_\partial(V) = 3.
\]

It is easy to verify that

\[
\psi_1 = w_2 \wedge w_3 \wedge \bar{w}_1 \wedge \bar{w}_2 \wedge \bar{w}_3,
\]

\[
\psi_2 = w_3 \wedge w_1 \wedge \bar{w}_1 \wedge \bar{w}_2 \wedge \bar{w}_3,
\]

\[
\psi_3 = w_1 \wedge w_2 \wedge \bar{w}_1 \wedge \bar{w}_2 \wedge \bar{w}_3
\]
represent linearly independent elements of $H^{2,4}_G(V)$ and hence generate this group.

Now, every $t \in G$ induces the analytic homeomorphism $T_t: z \mapsto t \cdot z$ of V onto itself; obviously each T_t is homotopic to the identity. We have

\[
(T_t)^*w_1 = w_1, \quad (T_t)^*w_2 = w_2 - l_3 w_1 + l_1 w_3, \quad (T_t)^*w_3 = w_3
\]

and hence

\[
(T_t)^*\psi_1 = \psi_1 + l_3 \psi_2, \quad (T_t)^*\psi_2 = \psi_2, \quad (T_t)^*\psi_3 = \psi_3 - l_1 \psi_2
\]

showing that there is no chain-homotopy.

References

Birkbeck College and
Princeton University