A THEOREM OF ÉLIE CARTAN

G. A. HUNT

André Weil [1] and Hopf and Samelson [2] have given a topological proof of the following theorem of Élie Cartan.

Two maximal Abelian subgroups of a compact connected Lie group G are conjugate within G.

I present a simple metric proof.

Lemma. If x and y are elements of the Lie algebra g of G then $[x, A_x y]$ vanishes for some inner automorphism A_x of G.

Proof. Because G is compact one can define on g a nonsingular bilinear form (u, v) which is invariant: $([u, v], w) + (v, [u, w]) = 0$. We choose ε in G so that $(x, A_x y)$ attains its minimum for $\sigma = \varepsilon$; without loss of generality we may assume ε to be the neutral element of G, and then $A_x y = y$. If now z is any element of g the function $(x, A_{\exp(\varepsilon t)} y)$ has a minimum for $t = 0$, so that its derivative vanishes there. Thus, keeping in mind that

$$\frac{d}{dt} A_{\exp(\varepsilon t)} y \bigg|_{t=0} = [z, y],$$

we have $(x, [z, y]) = 0$. From this equation and from the invariance of the bilinear form it follows that $([x, y], z) = 0$ for all z; this can happen only if $[x, y]$ vanishes, for the bilinear form is nondegenerate.

Before proving Cartan's theorem I recall some well-known facts: A maximal Abelian subgroup \mathcal{C} of G is a torus group; there is an element x in the Lie algebra \mathfrak{c} of \mathcal{C} such that the one parameter group $\exp tx$ is dense in \mathcal{C}; if y belongs to g and $[x, y] = 0$, then y must lie in \mathfrak{c}.

Matters being so, let \mathcal{C}' be a second maximal Abelian subgroup of G and x' an element of its Lie algebra bearing the same relation with y as x.
to \(\mathfrak{K}' \) as \(x \) does to \(\mathfrak{K} \). Now choose \(\sigma \) in \(\mathcal{G} \) so that \([x, A_x']\) vanishes. Then \(A_x' \) lies in \(\mathfrak{h} \); consequently \(A_x'(\exp tx') = \exp (tA_x') \) lies in \(\mathfrak{K} \) for every \(t \). So \(\mathfrak{K} \), being closed, includes the closure \(A_x'(\mathfrak{K}') \) of the one-parameter group \(A_x(\exp tx') \). Finally \(A_x(\mathfrak{K}') = \mathfrak{K} \), because both are maximal Abelian subgroups of \(\mathcal{G} \).

Since every element of \(\mathcal{G} \) can be written as \(\exp y \), the argument shows that every element of \(\mathcal{G} \) can be moved into \(\mathfrak{K} \) by an inner automorphism of \(\mathcal{G} \).

The referee has pointed out that the argument of the lemma above is very like one used by R. Bott [3] in another context.

Bibliography

Cornell University