On finite projective games

Author:
Moses Richardson

Journal:
Proc. Amer. Math. Soc. **7** (1956), 458-465

MSC:
Primary 90.0X

DOI:
https://doi.org/10.1090/S0002-9939-1956-0079543-2

MathSciNet review:
0079543

Full-text PDF

References | Similar Articles | Additional Information

**[1]**R. D. Carmichael,*Introduction to the theory of groups of finite order*, Ginn, 1937.**[2]**D. B. Gillies,*Discriminatory and bargaining solutions to a class of symmetric 𝑛-person games*, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 325–342. MR**0053476****[3]**R. Duncan Luce,*A definition of stability for 𝑛-person games*, Ann. of Math. (2)**59**(1954), 357–366. MR**0062411**, https://doi.org/10.2307/1969706**[4]**John von Neumann and Oskar Morgenstern,*Theory of Games and Economic Behavior*, Princeton University Press, Princeton, N. J., 1947. 2d ed. MR**0021298****[5]**L. S. Shapley,*Lectures on n-person games*, Princeton University Notes, to be published.**[6]**James Singer,*A theorem in finite projective geometry and some applications to number theory*, Trans. Amer. Math. Soc.**43**(1938), no. 3, 377–385. MR**1501951**, https://doi.org/10.1090/S0002-9947-1938-1501951-4**[7]**Ernst Snapper,*Periodic linear transformations of affine and projective geometries*, Canadian J. Math.**2**(1950), 149–151. MR**0035033****[8]**Oswald Veblen and W. H. Bussey,*Finite projective geometries*, Trans. Amer. Math. Soc.**7**(1906), no. 2, 241–259. MR**1500747**, https://doi.org/10.1090/S0002-9947-1906-1500747-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
90.0X

Retrieve articles in all journals with MSC: 90.0X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1956-0079543-2

Article copyright:
© Copyright 1956
American Mathematical Society