A FIXED POINT THEOREM

ELDON DYER

Suppose that space is metric. A chain is a finite collection of open sets \(d_1, d_2, \ldots, d_n \) such that \(d_i \) intersects \(d_j \) if and only if \(|i - j| \leq 1 \). If the elements of a chain are of diameter less than a positive number \(\epsilon \), that chain is said to be an \(\epsilon \)-chain. A compact continuum is said to be chainable if for each positive number \(\epsilon \), there is an \(\epsilon \)-chain covering it. R. H. Bing has called \[1\] such continua snake-like. In 1951 O. H. Hamilton showed \[4\] that every compact chainable continuum has the fixed point property; i.e., that if \(f \) is a continuous mapping of such a continuum \(M \) into itself, then some point of \(M \) is its own image under \(f \).

In the present paper it is shown that the Cartesian product of finitely many compact chainable continua has the fixed point property. Since arcs are compact chainable continua, this is a generalization of the Brouwer fixed point theorem. Two other examples of compact chainable continua are the closure of the graph of \(\sin(1/x) \), \(0 < x \leq 1 \), and the pseudo-arc. Other examples are given in \[1\].

After reading the original manuscript of this paper, A. D. Wallace raised the question as to whether the Cartesian product of finitely many compact chainable continua is a quasi-complex (p. 323 of \[6\]). Rather surprisingly, the answer to this question is in the affirmative. A proof of this theorem is also given here. Since the Cartesian product of finitely many compact chainable continua is zero-cyclic, the fact that such products have the fixed point property is a special case of the Lefschetz fixed point theorem for zero-cyclic quasi-complexes. Since the author’s original argument is of a very different nature, it is also given.

Let \(E^n \) denote Euclidean \(n \)-space and \(\mathbb{R}^n \) the set of all points of \(E^n \) whose distance from the origin is not greater than one. Let \(S^{n-1} \) denote the set of all points of \(E^n \) whose distance from the origin is one. Let \(I \) denote the set of all points on the \(x \)-axis having abscissa \(x \) such that \(0 \leq x \leq 1 \), and let \(I^n \) denote the set of all points of \(E^n \) each of whose \(n \) coordinates \(x_i \) satisfies \(0 \leq x_i \leq 1 \). If \(P \) is a point of \(E^n \) having coordinates \((x_1, x_2, \ldots, x_n) \) and \(t \) is a real number, by \(tP \) is meant the point of \(E^n \) having coordinates \((tx_1, tx_2, \ldots, tx_n) \).

Presented to the Society, April 15, 1955; received by the editors February 23, 1955, and, in revised form, July 2, 1955.

662
A FIXED POINT THEOREM 663

For definitions of those concepts from homotopy theory which are used in this paper the reader is referred to §3 of Chapter VI of [5].

Lemma 1. Suppose f and g are continuous mappings of R^n into itself and $g|S^{n-1}$ is an essential mapping onto S^{n-1}. Then there is a point x in R^n such that $f(x) = g(x)$.

Proof. Suppose there is no point x in R^n such that $f(x) = g(x)$. For each point x in R^n let $h(x) = g(x) - f(x)$. For each point x in S^{n-1} and number t, $0 \leq t \leq 1$, let $H(x, t) = h(tx)/|h(tx)|$. This is possible since $h(x) \neq 0$ for any x in R^n. $H(x, t)$ is continuous in x and t.

If $H(x, 1)$ and $g(x)$ were not antipodal for any point x in S^{n-1}, they would be homotopic; but $g|S^{n-1}$ is essential and $H(S^{n-1}, 1)$ is homotopic to the constant map $H(S^{n-1}, 0)$. Hence, there is a point x in S^{n-1} such that $H(x, 1) = -g(x)$. Then $g(x) \cdot (1 + |g(x) - f(x)|) = f(x)$. Let $k = 1 + |g(x) - f(x)|$, $k \cdot g(x) = f(x)$. Since $|g(x)| = 1$ and $|f(x)| \leq 1$, $k \leq 1$; but by its definition $k \geq 1$. Therefore, $g(x) = f(x)$.

Lemma 2. Suppose that for each integer i, $1 \leq i \leq n$, f_i is a continuous mapping of I onto I such that $f_i(0) = 0$ and $f_i(1) = 1$. For each point $x = (x_1, x_2, \cdots, x_n)$ of I^n let $f(x) = (f_1(x_1), f_2(x_2), \cdots, f_n(x_n))$. Let T^{n-1} denote the set of all points x of I^n such that for some i, x_i is either 0 or 1. Then $f|T^{n-1} = T^{n-1}$, and $f|T^{n-1}$ is homotopic to the identity map of T^{n-1} onto itself.

Proof. For each integer i, $1 \leq i \leq n$, there is a continuous mapping $h_i(x, t)$ of $I \times I$ onto I such that $h_i(x, 0) = f_i(x)$, $h_i(x, 1) = x$, and $h_i(0, t) = 0$ and $h_i(1, t) = 1$ for $0 \leq t \leq 1$. Let $H(x, t)$, $0 \leq t \leq 1$ and x in I^n, be defined as follows: $H(x, t) = (h_1(x_1, 1), \cdots, h_{i-1}(x_{i-1}, 1), h_i(x_i, t), h_{i+1}(x_{i+1}, 0), \cdots, h_n(x_n, 0))$, where $(i-1)/n \leq t \leq i/n$ and $u = n \cdot [t - (i-1)/n]$. It can easily be shown that $H(x, t)$ is continuous in x and t, that $H(x, 0) = f(x)$ for all x in I^n, that $H(x, 1) = x$ for all x in T^{n-1} (in fact in I^n), and that $H(T^{n-1}, t) = T^{n-1}$ for all t, $0 \leq t \leq 1$.

Theorem 1. Suppose that M is the Cartesian product of n compact chainable continua X_1, X_2, \cdots, X_n and f is a continuous mapping of M into itself. Then there is a point x of M such that $x = f(x)$.

Proof. Let M be all of space. Suppose there is no point x of M such that $x = f(x)$. There is a positive number ε such that $d(x, f(x)) > 4n\varepsilon$ for all points x in M. For each integer i, $1 \leq i \leq n$, there is a chain A_i covering X_i such that each element of the collection C_n of all ordered n-tuples (a_1, a_2, \cdots, a_n), where a_i is in A_i, has diameter less than ε. For each integer i, $1 \leq i \leq n$, there is a chain B_i covering
Xi such that B'_i is a refinement of A_i and each element of the collection C'_i of all ordered n-tuples (b_1, b_2, \cdots, b_n), where b_i is in B'_i, is mapped by f into some element of C_A. For each i let B_i denote a subchain of B'_i which is irreducible with respect to covering points in the first and last links of A_i which are not in any other link of A_i, and let C_i denote the subcollection of C'_i of all ordered n-tuples (b_1, b_2, \cdots, b_n), where b_i is in B_i. For each i let a_i denote the number of links of A_i and b_i denote the number of links of B_i. If for some i, the first link of B_i lies in the last link of A_i, renumber the links of B_i so that its jth link becomes its $(b_i - j + 1)$st link.

For each $x = (x_1, x_2, \cdots, x_n)$, where $x_i = k_i/\beta_i - 1$, k_i being an integer such that $0 \leq k_i \leq \beta_i - 1$, let ρ_i be the element of C_i whose ith term is the $(k_i + 1)$st link in B_i. $f(\rho_i)$ is in some element θ of C_A. The ith term of θ is the p_ith link of A_i. There are two adjacent positive integers m_i and $m_i + 1$ such that the ith term of any element of C_A containing $f(\rho_i)$ is either the m_ith or the $(m_i + 1)$st link of A_i, and one of the numbers m_i and $m_i + 1$ is p_i. If no element of C_A containing $f(\rho_i)$ has an ith term other than the p_ith link of A_i, let

$$f_i(x) = (p_i - 1)/(a_i - 1).$$

If some element of C_A containing $f(\rho_i)$ has an ith term other than the p_ith link of A_i, let $f_i(x) = (2m_i - 1)/(2(a_i - 1))$. Let

$$F(x) = (f_1(x), f_2(x), \cdots, f_n(x)).$$

Let B denote the set of all points $x = (x_1, x_2, \cdots, x_n)$ of I^n such that for each integer i, $1 \leq i \leq n$, there is an integer k_i, $0 \leq k_i \leq \beta_i - 1$, such that $x_i = k_i/\beta_i - 1$. Let \mathcal{B} denote the collection of all sets σ of 2^n points of B for which there is a point P of σ such that for every point Q of σ and for each integer i, $1 \leq i \leq n$, the ith coordinate of Q either equals the ith coordinate of P or exceeds it by 1. It can be shown (see, for example, §8 of Chapter II of [3]) that there is an n-complex β which is a triangulation of I^n such that the vertex set of each simplex in β is a subset of an element of \mathcal{B}.

For each point x in I^n and simplex σ of β containing it, let (a_0, a_1, \cdots, a_j) be the barycentric coordinates of x with respect to the vertex set (s_0, s_1, \cdots, s_j) of σ. $x = a_0 s_0 + a_1 s_1 + \cdots + a_j s_j$. Define $F_\sigma(x)$ to be $a_0 F(s_0) + a_1 F(s_1) + \cdots + a_j F(s_j)$. Clearly, F_σ is continuous on σ. If x is common to two simplexes σ_1 and σ_2 of β, let σ denote their common face. Then $F_{\sigma_1}(x) = F_\sigma(x) = F_{\sigma_2}(x)$. Hence, if $F(x)$ denotes $F_\sigma(x)$ for any simplex σ of β containing x, F is a continuous mapping of I^n into itself. Furthermore, if P is a vertex of a simplex of β containing the point x, for each integer i, $1 \leq i \leq n$, the
ith coordinates of \(F(P) \) and \(F(x) \) do not differ by more than \(1/(\alpha_i - 1) \).

Let \(g_i((k-1)/(\beta_i - 1)) = (j-1)/(\alpha_i - 1) \) if the \(k \)th link of \(B_i \) lies in only the \(j \)th link of \(A_i \). If the \(k \)th link of \(B_i \) lies in two links of \(A_i \), the \(j \)th and \((j+1)\)st, let \(g_i((k-1)/(\beta_i - 1)) = (2j-1)/2/(\alpha_i - 1) \). Let \(g_i(I) = I \) be the piecewise linear extension of this mapping. For each point \(x \) of \(I \) such that \((k-1)/(\beta_i - 1) \leq x \leq k/(\beta_i - 1) \), \(g_i(x) \) is between \(g_i((k-1)/(\beta_i - 1)) \) and \(g_i(k/(\beta_i - 1)) \). For each point \(x \) in \(I^n \), let \(g(x) = (g_1(x_1), g_2(x_2), \ldots, g_n(x_n)) \). Let \(T^{n-1} \) denote the boundary of \(I^n \). By Lemma 2, \(g|T^{n-1} \) is homotopic to the identity mapping of \(T^{n-1} \) onto itself; hence, \(g|T^{n-1} \) is essential onto \(T^{n-1} \).

By Lemma 1, there is a point \(x \) of \(I^n \) such that \(F(x) = g(x) \). Let \(v \) denote a vertex of a simplex of \(\beta \) containing \(x \). For each integer \(i \), \(1 \leq i \leq n \), the \(i \)th coordinate of \(F(x) \) does not differ from the \(i \)th coordinate of \(F(v) \) by more than \(1/(\alpha_i - 1) \). Also, the \(i \)th coordinate of \(g(x) \) does not differ from the \(i \)th coordinate of \(g(v) \) by more than \(1/(\alpha_i - 1) \). Hence, the \(i \)th coordinate of \(F(v) \) does not differ from the \(i \)th coordinate of \(g(v) \) by more than \(2/(\alpha_i - 1) \). The point \(v \) is an element of the set \(B_i \); i.e., \(v = (v_1, v_2, \ldots, v_n) \), where for each integer \(i \), \(1 \leq i \leq n \), there is an integer \(k_i, 0 \leq k_i \leq \beta_i - 1 \), such that \(v_i = k_i/(\beta_i - 1) \).

Let \(V \) denote the element of the set \(C_\alpha \) whose \(i \)th term is the \((k_i + 1)\)st link of \(B_i \). Let \(\emptyset \) denote an element of \(C_\alpha \) such that for each \(i \), the \(i \)th term of \(V \) lies in the \(i \)th term of \(\emptyset \) and let \(\emptyset \) be an element of \(C_\alpha \) containing \(f(V) \). For each \(i \) there is a subchain in \(A_i \) from the \(i \)th term of \(\emptyset \) to the \(i \)th term of \(\emptyset \) having not more than \(4n \) links. Each of these links is of diameter less than \(e \); therefore, \(d(V, f(V)) < 4ne \). This is a contradiction.

Corollary. The Cartesian product of the elements of any collection of compact chainable continua has the fixed point property.

Proof. This follows immediately from Theorem 1 and the theorem that if \(G \) is a collection of compact Hausdorff spaces such that the Cartesian product of the elements of each finite subcollection of \(G \) has the fixed point property, then the Cartesian product of the elements of the collection \(G \) has the fixed point property.

For the definition of the term quasi-complex the reader is referred to p. 323 of \cite{6}. Notation and terminology used, with only a few exceptions, are in conformity with that used in \cite{6}.

Lemma 3. If \(\alpha \) and \(\beta \) are arc-like finite simplicial complexes and \(\pi \) is a simplicial mapping of \(\beta \) onto \(\alpha \), there exists a chain mapping \(\omega \) of \(\alpha \) into \(\beta \) such that

(i) for each zero-chain \(\gamma^0 \) of \(\alpha \), \(KI(\gamma^0) = KI(\omega(\gamma^0)) \);
(ii) for each i-simplex σ^i of α and i-simplex γ^i of β having nonzero coefficient in $\omega(1 \cdot \sigma^i), \pi(\gamma^i) \subset \sigma^i$; and (iii) $\omega \tau \sim 1$.

Proof. Let a_1, a_2, \ldots, a_n denote the vertices of α ordered as on α. There is a subarc β' of β such that $\pi(\beta') = \alpha$ and there is no proper subarc γ of β' such that $\pi(\gamma) = \alpha$. Let b_1 denote the vertex of β' such that $\pi(b_1) = a_1$ and let b_1, b_2, \ldots, b_m denote the vertices of β' ordered as on β'. There is a subsequence $b_{k_1}, b_{k_2}, \ldots, b_{k_p}$ of b_1, b_2, \ldots, b_m such that

1. $\pi(b_{k_j}) = a_1$ and $\pi(b_{k_p}) = a_n$;
2. if $\pi(b_{k_j}) = a_1$ and $\pi(b_{k_{j+1}}) = a_k$, then $|j - k| \leq 1$; and
3. for each i, k_{i+1} is the greatest integer j such that
 a. $k_i \leq j \leq k_p$ and
 b. $\pi(b_{k_j}) = a_i$ and $\pi(b_{k_{j+1}}) = a_{i+1}$, then $X_i = -1$.

Define $\omega(1 \cdot a_i)$ to be $1 \cdot \sum_{j=1}^{p} X_i \cdot b_{k_j}$, where $X_i = 0$ if $\pi(b_{k_j}) \neq a_i$,

and if $\pi(b_{k_j}) = a_i$ and $\pi(b_{k_{j+1}}) = a_{i+1}$, then $X_i^j = +1$.

Define $\omega(1 \cdot (a_i, a_{i+1})) = \sum_{j=1}^{m-1} Y_i \cdot (b_j, b_{j+1})$, where if $k_i \leq j < j+1 \leq k_{i+1}$ and for all l, $k_i \leq l \leq k_{i+1}$, $\pi(b_l) \in \{a_i\} \cup \{a_{i+1}\}$, then $Y_i^j = +1$; otherwise, $Y_i^j = 0$.

To show that ω is a chain mapping, it will be shown that for each j, the coefficient of b_j is the same in both $\omega(1 \cdot (a_i, a_{i+1}))$ and $\delta\omega(1 \cdot (a_i, a_{i+1}))$, where δ denotes the boundary operator. Unless j is some k_i, its coefficient in both expressions is zero. Suppose $j = k_i$.

Case 1. $\pi(b_{k_i}) = a_{i+1}$. If $\pi(b_{k_{i+1}}) = a_{i+2}$, then $\{\pi(b_{k_{i-1}})\} \cup \{\pi(b_{k_{i+1}})\} \subset \{a_i\} \cup \{a_{i+1}\}$ and $\omega(a_i, a_{i+1})$ contains $1 \cdot (b_{k_{i-1}}, b_{k_i})$ and $0 \cdot (b_{k_i}, b_{k_{i+1}})$. If $\pi(b_{k_{i+1}}) = a_i$, then either $\pi(b_{k_{i-1}})$ or $\pi(b_{k_{i+1}})$ does not lie in $\{a_i\} \cup \{a_{i+1}\}$ and $\omega(a_i, a_{i+1})$ contains $0 \cdot (b_{k_{i-1}}, b_{k_i})$ and $1 \cdot (b_{k_i}, b_{k_{i+1}})$. Thus, $\delta\omega(a_i, a_{i+1})$ contains $+1 \cdot b_{k_i}$ (or $-1 \cdot b_{k_i}$) if $\pi(b_{k_{i+1}}) = a_{i+2}$ (or a_i). This is the same coefficient for b_{k_i} as that given by $\omega(1 \cdot a_{i+1})$, which is the same as that given by $\omega\delta(a_i, a_{i+1})$.

Case 2. $\pi(b_{k_i}) = a_i$. If $\pi(b_{k_{i+1}}) = a_{i+1}$, then $\omega(a_i, a_{i+1})$ contains $0 \cdot (b_{k_{i-1}}, b_{k_i})$ and $1 \cdot (b_{k_i}, b_{k_{i+1}})$. If $\pi(b_{k_{i+1}}) = a_{i-1}$, then $\omega(a_i, a_{i+1})$ contains $1 \cdot (b_{k_{i-1}}, b_{k_i})$ and $0 \cdot (b_{k_i}, b_{k_{i+1}})$. Thus, $\delta\omega(a_i, a_{i+1})$ contains $-1 \cdot b_{k_i}$ (or $+1 \cdot b_{k_i}$) if $\pi(b_{k_{i+1}}) = a_{i+1}$ (or a_{i-1}). This is the same coefficient for b_{k_i} as that given by $\omega(-1 \cdot a_i)$, which is the same as that given by $\omega\delta(a_i, a_{i+1})$. Thus, ω is a chain mapping.

To show that ω preserves the Kronecker index of zero-cycles, it will be shown that $K\!I(\omega(1 \cdot a_i)) = 1$, for each i. Clearly, $K\!I(\omega(1 \cdot a_i))$
A FIXED POINT THEOREM

Let U_i be the collection of all subarcs γ of β' which are maximal with respect to $\pi(\gamma) = a_i$ and such that if $b_i, b_{i+1}, \ldots, b_{i+k}$ are the vertices of γ, $\pi(b_{i-1}) = a_{i-1}$ and $\pi(b_{i+k+1}) = a_{i+1}$. Let D_i be the collection of all such maximal subarcs for which $\pi(b_{i-1}) = a_{i-1}$ and $\pi(b_{i+k+1}) = a_{i+1}$. For each element of $U_i \cup D_i$, the vertex b_{i+k} is a b_k, and $\omega(1 \cdot a_i)$ contains $+1 \cdot b_{i+k}$ or $-1 \cdot b_{i+k}$ as b_{i+k} is a vertex of an element of U_i or D_i. Also $\omega(1 \cdot a_i)$ does not attach a nonzero coefficient to any b_k which is not a vertex of some element of $U_i \cup D_i$. Thus, $K_1(\omega(1 \cdot a_i))$ equals the number of elements of U_i minus the number of elements of D_i. If the elements of $U_i \cup D_i$ are ordered as on β', between each two elements of U_i there is an element of D_i and between each two elements of D_i there is an element of U_i; furthermore, the first and last elements of $U_i \cup D_i$ are in U_i. Hence, U_i has one more element than D_i, and $K_1(\omega(1 \cdot a_i)) = 1$.

For cycles γ^p on β of dimension $p = 1$, $\omega(\gamma^p)$ is a cycle; also $\omega(\gamma^p) - \gamma^p$ is a cycle. Since β is zero-cyclic, $\omega(\gamma^p) - \gamma^p \sim 0$ or $\omega(\gamma^p) \sim \gamma^p$. For any zero-cycle, γ^0, on β, $K_1(\omega(\gamma^0)) = K_1(\gamma^0)$, and so $\omega(\gamma^0) \sim \gamma^0$. Hence, $\gamma^0 \sim 1$.

Theorem 2. Every compact metric chainable continuum is a quasi-complex.

Proof. Let M denote a compact metric chainable continuum. Let U_1, U_2, \ldots be a sequence of chains covering M such that U_{i+1} is a refinement of U_i and U_i is a $(1/i)$-chain; let Φ_i denote the nerve of U_i. If i and j are positive integers and $i < j$, let π_i^j denote a simplicial mapping of Φ_j onto Φ_i induced by inclusion; i.e., a projection mapping. Let ω^j_i denote the chain mapping of Φ_i into Φ_j defined for π_i^j as in Lemma 3. Antiprojections will be the mappings ω^j_i and finite products $\omega_i^{m-1} \cdots \omega_i^1 \cdot \omega_i^0$, where $i < i_1 < \cdots < i_n$. These products also preserve the Kronecker index of zero-cycles on Φ_i. These mappings have all of the properties required in Property B on p. 323 of [6]. To show that M has Property C, for each $U_i(=a)$, let $U_j(=g)$ be a sufficiently small refinement of U_i that any three adjacent elements of U_j lie in some element of U_i. Then for any $U_k(=b)$, let $U_m(=h)$ be the one of the two U_j and U_k which is a refinement of both. Therefore, M has Property C.

For two complexes K_1 and K_2, $K_1 \Delta K_2$ denotes the simplicial product of K_1 and K_2 as defined in §8 of Chapter II of [3].

Lemma 4. If for each i, $1 \leq i \leq n$, α_i is a finite simplicial complex, β_i is a connected finite simplicial complex, and ω_i maps the zero-chains of α_i into zero-chains of β_i in such a way that $K_1(\omega_i(\sigma^i)) = 0$ for each one-simplex σ^i of α_i, then if $\alpha = \alpha_1 \Delta \alpha_2 \Delta \cdots \Delta \alpha_n$, $\beta = \beta_1 \Delta \beta_2 \Delta \cdots \Delta \beta_n$.
\[\Delta \beta_n, \text{ and for each vertex } v = (a_1, a_2, \ldots, a_n) \text{ of } \alpha, \text{ where } a_i \text{ is a vertex of } \alpha, \quad \omega(1 \cdot v) = \sum \gamma_b \cdot (b_1, b_2, \ldots, b_n), \text{ where the summation extends over all vertices } b = (b_1, b_2, \ldots, b_n) \text{ of } \beta, \text{ and for each } b, \gamma_b \text{ is the product of the coefficients of the } b_i \text{ in } \omega(a_i), \text{ then if } \gamma^0 \text{ is a bounding zero-cycle in } \alpha, \omega(\gamma^0) \text{ is a bounding zero-cycle in } \beta. \]

Proof. For each vertex \(v \) of \(\alpha \), the Kronecker index of \(\omega(v) \) equals the product of the Kronecker indices of the \(\omega_i(a_i) \), where \(\{a_i\} \) are the coordinates of \(v \). If \(\gamma^0 \) is the boundary of the one-simplex \((v_1, v_2)\) of \(\alpha \), where all of the coordinates of \(v_1 \) and \(v_2 \) are the same except the \(i \)th, then \(\text{KI}(\omega(\gamma^0)) = \text{KI}(\omega(v_2)) - \text{KI}(\omega(v_1)) = 0 \), since \(\text{KI}(\omega(\delta(v_1, v_2))) = 0 \). Since \(\beta \) is connected, \(\omega(\gamma^0) \) bounds. If \(\gamma^0 \) is the boundary of any one-simplex in \(\alpha \), it is the sum of the boundaries of one-simplexes in \(\alpha \) of the sort discussed in the previous sentence; hence, \(\text{KI}(\omega(\gamma^0)) = 0 \). Finally, if \(\gamma^0 = \delta \sum_{i=1}^n p_k \cdot \sigma_i^k \), where each \(\sigma_i^k \) is a one-simplex of \(\alpha \) and \(p_k \) is an element of the coefficient group, \(\omega(\gamma^0) = \omega \left(\sum_{i=1}^n p_k \cdot \delta(\sigma_i^k) \right) = \sum_{i=1}^n p_k \cdot \omega(\sigma_i^k) \); therefore, \(\text{KI}(\omega(\gamma^0)) = 0 \). Hence, in each case \(\omega(\gamma^0) \) bounds if \(\gamma^0 \) bounds.

Lemma 5. If \(\sigma \) is a complex, \(\sigma' \) is a subcomplex of \(\sigma \) containing all of the vertices of \(\sigma \), \(\gamma \) is a zero-cyclic complex, and \(\omega' \) is a chain mapping of \(\sigma' \) into \(\gamma \) which maps bounding zero-cycles on \(\sigma' \) into bounding zero-cycles on \(\gamma \), then \(\omega' \) can be extended to a chain mapping \(\omega \) of \(\sigma \) into \(\gamma \).

Proof. Let \(\alpha_1, \alpha_2, \ldots, \alpha_k \) denote the simplexes in \(\sigma \) which are not in \(\sigma' \) ordered such that if \(i < j \), then the dimension of \(\alpha_i \) is less than or equal to the dimension of \(\alpha_j \). The argument will be by mathematical induction. For each \(i, 1 \leq i \leq k \), let \(\sigma_i \) denote the subcomplex of \(\sigma \) consisting of all simplexes of \(\sigma' \) and all simplexes in each of the simplexes \(\alpha_1, \alpha_2, \ldots, \alpha_i \). \(\omega_1 \) is the extension of \(\omega' \) to \(\sigma_1 \) obtained as follows: since \(\delta(\alpha_1) \) is in \(\sigma' \) and is a bounding cycle, \(\omega' \delta(\alpha_1) \) is a cycle in \(\gamma \) which bounds in \(\gamma \) if it is a zero-cycle since it is the image of a bounding zero-cycle and bounds in \(\gamma \) if it is a higher-dimensional cycle since all such cycles bound in \(\gamma \). Let \(\tau_1 \) denote a chain in \(\gamma \) such that \(\omega' \delta(\alpha_1) = \delta \tau_1 \) and let \(\omega_1(\alpha_1) = \tau_1 \). Then \(\omega_1 \) is a chain mapping of \(\sigma_1 \) into \(\gamma \) and is an extension of \(\omega' \). It is clear this process can be continued inductively.

An \(n \)-product simplex is a simplex which is the \(\Delta \) product of \(n \) simplexes.

Lemma 6. If for each \(i, 1 \leq i \leq n \), \(\alpha_i \) and \(\beta_i \) are arc-like finite simplicial complexes and \(\pi_i \) is a simplicial mapping of \(\beta_i \) onto \(\alpha_i \), then if for each vertex \(b \) of \(\beta = \beta_1 \Delta \beta_2 \Delta \cdots \Delta \beta_n, \pi(b) \) is the vertex \((\pi_1(b_1), \pi_2(b_2), \ldots, \pi_n(b_n)) \) of \(\alpha = \alpha_1 \Delta \alpha_2 \Delta \cdots \Delta \alpha_n \), where for each \(i, b_i \) is the \(i \)th coordinate.
of \(b \), then \(\pi \) is a simplicial mapping of \(\beta \) onto \(\alpha \) and there is a chain mapping \(\omega \) of \(\alpha \) into \(\beta \) such that

(i) for each zero-chain \(\gamma^0 \) of \(\alpha \), \(\text{KI}(\gamma^0) = \text{KI}(\omega(\gamma^0)) \);

(ii) for each \(k \)-simplex \(\sigma^k \) of \(\alpha \), \((2^n - 1) \)-simplex \(\sigma \) of \(\alpha \) of which \(\sigma^k \) is a face, and \(k \)-simplex \(\gamma^k \) of \(\beta \) having nonzero coefficient in \(\omega(1 \cdot \sigma^k) \), \(\pi(\gamma^k) \subseteq \sigma \); and

(iii) \(\omega \pi \sim 1 \).

Proof. For each vertex \(v = (a_1, a_2, \cdots, a_n) \) of \(\alpha \) and vertex \(u = (b_1, b_2, \cdots, b_n) \) of \(\beta \), let \(\omega_u(v) = \lambda_u \cdot u \), where \(\lambda_u \) is the product of the coefficients of the \(b_i \) in \(\omega_i(a_i) \), \(\omega_i \) being defined for \(\alpha_i, \beta_i, \) and \(\pi_i \) as in Lemma 3. Let \(\omega'(v) = \sum \omega_u(v) \), where the summation is over all vertices \(u \) in \(\beta \). \(\text{KI}(\omega'(v)) \) is the product of the Kronecker indices of the \(\omega_i(a_i) \) and since each of these is one, \(\text{KI}(\omega'(v)) = 1 \).

Let \(\gamma_1, \gamma_2, \cdots, \gamma_k \) denote the \(n \)-product simplexes of \(\alpha \) of positive dimension ordered so that if \(i < j \), then the dimension of \(\gamma_i \) is less than or equal to the dimension of \(\gamma_j \). For each \(j \), let \(\rho_j \) denote the subcomplex of \(\alpha \) composed of all vertices of \(\alpha \) and all faces of all simplexes \(\gamma_1, \gamma_2, \cdots, \gamma_j \). \(\gamma_i = A_1 \Delta A_2 \Delta \cdots \Delta A_n \), where each \(A_i \) is a simplex in \(\alpha_i \). Let \(B_i \) denote the collection of all maximal coherent subcomplexes of \(\beta_i \) each simplex of which has a nonzero coefficient in \(\omega_i(a_i) \). For each subcomplex \(\mu = X_1 \Delta X_2 \Delta \cdots \Delta X_n \) of \(\beta_i \), each \(X_1 \) being an element of \(B_i \), let \(\omega^i,\mu \) be a chain mapping of \(\gamma_i \) into \(\mu \) defined as in Lemma 5 which is an extension of the zero-chain map \(\omega^i \) defined to be \(\sum \omega_u(v) \), where the summation extends over all vertices \(u \) of \(\mu \). That the map \(\omega^i,\mu \) satisfies the hypothesis of Lemma 5 is shown by Lemma 4 and the fact that for the map \(\omega_i \) as defined in Lemma 3 and for each one-simplex \(A_i \) of \(\alpha_i \) and maximal coherent subcomplex \(X_i \) of \(\beta_i \) each simplex of which has a nonzero coefficient in \(\omega_i(A_i) \), the subchain of \(\omega_i(\delta(A_i)) \) over those simplexes of \(\beta_i \) which lie in \(X_i \) bounds in \(X_i \). Let \(\omega^i \) be the map \(\sum \omega^i,\mu \), where the summation extends over all \(n \)-product simplexes \(\mu \) of \(\beta \) of the form \(X_1 \Delta X_2 \Delta \cdots \Delta X_n \), each \(X_i \) being an element of \(B_i \). \(\omega^i \) is a chain mapping of the subcomplex \(\rho_i \) of \(\alpha \) into \(\beta \).

The chain mapping \(\omega \) will be constructed inductively. Suppose the chain map \(\omega^i \) of the complex \(\rho_i \) into \(\beta \) is defined and has the following properties: \(\omega^i \) is an extension of \(\omega^{i-1} \) and for each \(n \)-product simplex \(\gamma = A_1 \Delta A_2 \Delta \cdots \Delta A_n \) of \(\rho_i \) if \(B_i \) denotes the collection of all maximal coherent subcomplexes of \(\beta_i \) each of whose simplexes has nonzero coefficients in \(\omega_i(A_i) \), and for each complex \(\mu = Y_1 \Delta Y_2 \Delta \cdots \Delta Y_n \) of \(\beta \), each \(Y_i \) being an element of \(B_i \), \(\omega^i,\mu(\gamma^i) \), for each \(i \)-simplex \(\gamma_i \) in \(\gamma \), denotes the sum of those \(i \)-simplexes in \(\mu \) with the same coefficients as they have in \(\omega^i(\gamma^i) \), then \(\omega^i,\mu(\gamma^i) \) is a chain mapping of \(\gamma_i \).
into μ which maps bounding zero-cycles into bounding zero-cycles, and $\omega^i(\gamma^i) = \sum \omega^i_\mu(\gamma^i)$, where the summation is over all μ of the form $Y_1 \Delta Y_2 \Delta \cdots \Delta Y_n$, each Y_i being an element of B_i. Then ω^i can be extended to a chain mapping ω^{i+1} of the complex ρ_{j+1} into β in such a way that ω^{i+1} has the same properties for ρ_{j+1} and β as that given above for ω^i with respect to ρ_j and β.

For the n-product simplex $\gamma_{j+1} = A_1 \Delta A_2 \Delta \cdots \Delta A_n$ of ρ_{j+1}, let C_i be defined as was B_i above but for the A_i of γ_{j+1}. For each complex $\lambda = Z_1 \Delta Z_2 \Delta \cdots \Delta Z_n$ in β, each Z_i being an element of C_i, and for each subsimplex γ^h of an n-product proper subsimplex γ of γ_{j+1}, let $\omega_\lambda(\gamma^h) = \sum \omega_{\lambda}(\gamma^h)$, where the summation is over all μ of the form $Y_1 \Delta Y_2 \Delta \cdots \Delta Y_n$, each Y_i being an element of B_i and a sub-complex of Z_i. Since each ω^i_μ satisfies the hypothesis of Lemma 5, ω_λ does; since λ is zero-cyclic, ω_λ can be extended to a chain mapping ω^{i+1}_λ of γ_{j+1} into λ. Define ω^{i+1}_j of γ_{j+1} into β to be $\sum \omega^{i+1}_\lambda$, where the summation is over all λ of the form $Z_1 \Delta Z_2 \Delta \cdots \Delta Z_n$, each Z_i being an element of C_i. For the n-product simplexes of ρ_{j+1} other than γ_{j+1}, let ω^{i+1} be ω^i. Each simplex of ρ_{j+1} which lies in both γ_{j+1} and another n-product simplex in ρ_{j+1} also lies in an n-product simplex of ρ_{j+1} common to both of them. Thus, the image of such a simplex under ω^i is the same as its image under ω^{i+1}. It might be noted that each map ω^{i+1}_λ maps bounding zero-cycles into bounding zero-cycles, and so the chain mapping ω^{i+1} of ρ_{j+1} into β has the same properties for β_{j+1} as has ω^i for ρ_j.

By mathematical induction there exists a chain mapping ω^α of ρ_k into β having similar properties. ρ_1 is α. Denote ω^α by ω. Since ω is an extension of ω^i, it preserves the Kronecker index of zero-cycles. By its construction, ω has property (ii) of the conclusion of this theorem. Since π also preserves Kronecker indices of zero-cycles, $\omega \pi$ does and $\omega \pi \sim 1$.

Theorem 3. The Cartesian product of finitely many compact metric chainable continua is a quasi-complex.

Proof. Let M_1, M_2, \ldots, M_n denote compact metric chainable continua. For each i, $1 \leq i \leq n$, let U^i_1, U^i_2, \ldots be a sequence of chains covering M_i such that U^i_{j+1} is a refinement of U^i_j and U^i_j is a $(1/j)$-chain; let Φ_j^i denote the nerve of U^i_j. For $j < k$, let π^i_{jk} be a simplicial mapping of Φ_j^i into Φ_k^i induced by inclusion and let ω^i_k be the chain mapping of Φ_k^i into Φ_1^i as defined in Lemma 3. For each j, let Φ_j be $\Phi^1_j \Delta \Phi^2_j \Delta \cdots \Delta \Phi^n_j$ and define mappings π^i_j of Φ_k into Φ_j and ω^i_j of Φ_j into Φ_1 as in Lemma 6. Φ_j is the nerve of the covering of $M = M_1 \times M_2 \times \cdots \times M_n$ obtained by taking the Cartesian product.
A FIXED POINT THEOREM

of the coverings \(U_1, U_2, \ldots, U^n \), and \(\pi_j^i \) is a projection mapping of \(\Phi \) onto \(\Phi_j \). The proof that the continuum \(M \) has Property B is just as that in Theorem 2.

The proof that \(M \) has Property C is also much like that in Theorem 2. For each integer \(i \), there is an integer \(j \) such that if \(G \) is a collection of sets in the open covering \(U_i = U^i_1 \times U^i_2 \times \cdots \times U^i_n \) having a common point, some element of the covering \(U_i = U^i_1 \times U^i_2 \times \cdots \times U^i_n \) contains the union of the elements of the collection \(G \). If \(U_k \) is a term of the sequence \(U_1, U_2, \ldots \), let \(U_m \) be the element of the set \(\{ U_j \} \cup \{ U_k \} \) having the greater subscript. For any simplex \(\sigma \) of \(\Phi_m \), there is a simplex \(\rho \) of \(\Phi_j \) containing \(\pi_m^j(\sigma) \) and all simplexes of \(\Phi_m \) having nonzero coefficients in \(\omega_m^j(\sigma) \). \(\pi_j(\sigma) \) is a vertex of \(\Phi_j \). Hence, Property C is satisfied.

Comments. A conjecture suggested by the theorem that each compact metric continuum which is chainable has the fixed point property is that each compact metric continuum which has arbitrarily small "square-like" coverings ("cube-like," etc.) has the fixed point property. S. Eilenberg pointed out to the author that an example given by Borsuk [2] settles this conjecture in the negative for such continua with arbitrarily small "cube-like" coverings.

Another open question is to determine which of the compact plane continua not separating the plane are not zero-cyclic quasi-complexes. It would also be interesting to know if the Cartesian product of any two quasi-complexes is a quasi-complex.

Added in proof. The proofs of Theorems 1, 2 and 3, with only slight modifications, actually establish somewhat more general results. Let us enlarge the class of chainable continua to include those compact Hausdorff spaces having a cofinal collection \(\omega \) of finite open coverings such that the elements of each member of \(\omega \) can be linearly ordered in such a way that two of them intersect if and only if they are adjacent in the ordering. The proofs of Theorems 1, 2 and 3 hold for this class of spaces if instead of using arguments depending on a metric we use the following lemmas (see [6, pp. 19 and 326]):

If \(X \) and \(Y \) are compact Hausdorff spaces, then every finite open covering of \(X \times Y \) has a refinement \(A \times B \), where \(A \) and \(B \) are finite open coverings of \(X \) and \(Y \), respectively, and

If \(f \) is a continuous map of the compact Hausdorff space \(X \) into itself having no fixed point, there is a finite open covering \(A \) of \(X \) such that no star of \(A \) meets its image under \(f \).

T. R. Brahana has announced [7] the result that the direct product of two quasi-complexes is a quasi-complex.
Bibliography

University of Georgia