Let X be a uniform space, let T be a multiplicative topological group, and let T act as a transformation group on X.

A subset A of T is said to be (left) syndetic provided that $T = AK$ for some compact subset K of T. The transformation group T is said to be almost periodic on X provided that if α is an index of X, then there exists a syndetic subset A of T such that $xA \subseteq x\alpha$ for all $x \in X$. If $x \in X$, then the transformation group T is said to be locally almost periodic at x provided that if U is a neighborhood of x, then there exists a neighborhood V of x and a syndetic subset A of T such that $VA \subseteq U$. The transformation group T is said to be locally almost periodic on X in case T is locally almost periodic at every point of X.

If $x \in X$, then the transformation group T is said to be locally weakly almost periodic at x provided that if U is a neighborhood of x, then there exists a neighborhood V of x, a syndetic subset A of T, and a compact subset C of T such that $y \in V$ implies the existence of a subset B of T for which $A \subseteq BC$ and $yB \subseteq U$. It is readily proved that if $x \in X$, then T is locally weakly almost periodic at x if and only if for each neighborhood U of x there exist a neighborhood V of x and a compact subset K of T such that $VT \subseteq UK$.

If $x \in X$, then the transformation group T is said to be equicontinuous at x provided that if α is an index of X, then there exists an index β of X such that $x\beta \subseteq xt\alpha$ for all $t \in T$. The transformation group T is said to be equicontinuous on X in case T is equicontinuous at every point of X. The transformation group T is said to be uniformly equicontinuous on X provided that if α is an index of X, then there exists an index β of X such that $x\beta \subseteq xt\alpha$ for all $x \in X$ and all $t \in T$. It is readily verified that if X is compact, then T is uniformly equicontinuous if and only if T is equicontinuous.

The transformation group T is said to be distal on X provided that if $x, y \in X$ with $x \neq y$, then there exists an index α of X such that $(x, y) \notin x\alpha$ for all $t \in T$.

We also consider T to be a transformation group acting on $X \times X$ in the following manner: if $x, y \in X$ and if $t \in T$, then $(x, y)t$ is defined to be (xt, yt).

Received by the editors July 12, 1955.

1 This research was supported by the United States Air Force through the Office of Scientific Research of the Air Research and Development Command.
As a general reference for the notions occurring in this paper, see [2].

Lemma 1. Let X be compact and suppose there exists $x \in X$ such that T is locally weakly almost periodic at (x, x) but T is not equicontinuous at x. Then T is not distal on X.

Proof. Let \mathcal{A} be the neighborhood filter of x. Since T is not equicontinuous at x, there exists an open neighborhood U of the diagonal of $X \times X$ such that $(N \times N)T \subseteq U$ for every $N \in \mathcal{A}$. Define $\mathcal{F} = \{(N \times N)T \cap U' : N \in \mathcal{A}\}$ where U' is the complement of U in $X \times X$. In order to show that T is not distal on X it is enough to show that $\mathcal{F} \neq \emptyset$. Since $\mathcal{F} = \{F : F \in \mathcal{F}\}$ is a closed filter-base on the compact set U', it follows that $\bigcap_{\mathcal{F}} \neq \emptyset$. We complete the proof by showing that each member of \mathcal{F} contains some member of \mathcal{F} whence $\bigcap_{\mathcal{F}} \cap \mathcal{F}$ and thus $\bigcap_{\mathcal{F}} \neq \emptyset$. Let $N \in \mathcal{A}$. Choose a closed neighborhood N_1 of x such that $N_1 \subseteq N$. Since T is locally weakly almost periodic at (x, x), there exist a neighborhood M of x and a compact subset K of T such that $(M \times M)T \subseteq (N_1 \times N_1)K$ whence $\operatorname{cls}(M \times M)T \subseteq (N_1 \times N_1)K \subseteq (N \times N)T \cap U'$. This shows that every member of \mathcal{F} contains some number of \mathcal{F}. The proof is completed.

Theorem 1. Let X be compact. Then the following statements are pairwise equivalent:

1. T is almost periodic.
2. T is locally almost periodic on X and T is distal on X.
3. T is locally weakly almost periodic at every point of the diagonal of $X \times X$ and T is distal on X.

Proof. It is known [2, 4.38] that if X is compact, then T is almost periodic if and only if T is uniformly equicontinuous. It follows easily from this theorem that (1) implies (2). An independent proof that (1) implies (2) may also be given.

Suppose now that T is locally almost periodic on X and let $x \in X$. We show T is locally weakly almost periodic at (x, x). Let U be a neighborhood of x. There exist a neighborhood V of x and a syndetic subset A of T such that $VA \subseteq U$. Let K be a compact subset of T for which $T = AK$. We conclude that $(V \times V)T \subseteq (U \times U)K$.

It is now clear that (2) implies (3). That (3) implies (1) is immediate from Lemma 1. The proof of the theorem is completed.

We say that X is a *minimal orbit-closure under T* or simply that X is *minimal under T* in case $xT = X$ for all $x \in X$. A discrete flow is a transformation group whose phase group T is the additive group of
integers with the discrete topology. A discrete flow is completely determined by a homeomorphism of the phase space \(X \) onto itself.

None of the conditions in (2) or (3) of Theorem 1 is redundant. It is known [2, 12.63] that there exist compact metrizable zero-dimensional locally almost periodic minimal orbit-closures under discrete flows which are not almost periodic. A simple example of a ring of concentric circles rotating at different rates about their common center shows that distal alone does not imply almost periodicity.

Let \(x, y \in X \). The pair \((x, y)\) is said to be \textit{proximal under} \(T \) provided that if \(\alpha \) is an index of \(X \), then there exists \(t \in T \) such that \((xt, yt) \in \alpha\). Of course, there exists a pair of distinct points of \(X \) which is proximal under \(T \) if and only if \(T \) is not distal on \(X \). The pair \((x, y)\) is said to be \textit{syndetically proximal under} \(T \) provided that if \(\alpha \) is an index of \(X \), then there exists a syndetic subset \(A \) of \(T \) such that \((xa, ya) \in \alpha \) for all \(a \in A \).

Lemma 2. Let \(X \) be compact, let \(x, y \in X \), let \((x, y)\) be proximal under \(T \), let \(\alpha \) be an index of \(X \), and let \(K \) be a compact subset of \(T \). Then there exists \(t \in T \) such that \((xtk, ytk) \in \alpha \) for all \(k \in K \).

Proof. Since \(X \times K \) is compact, the phase projection \(\pi: X \times T \to X \) defined by \(\pi(x, t) = xt \) is uniformly continuous on \(X \times K \). Hence there exists an index \(\beta \) of \(X \) such that \((x_1, x_2) \in \beta \) implies \((x_1k, x_2k) \in \alpha \) for all \(k \in K \). Choose \(t \in T \) such that \((xt, yt) \in \beta \). The conclusion follows.

Lemma 3. Let \(X \) be compact, let \(x, y \in X \), and let \(T \) be locally almost periodic at \(x \). Then \((x, y)\) is syndetically proximal if and only if \((x, y)\) is proximal.

Proof. The necessity is obvious. We prove the sufficiency. Suppose \((x, y)\) is proximal. Let \(\alpha \) be an index of \(X \). Choose a neighborhood \(U \) of \(x \) such that \(U \times U \subseteq \alpha \). There exist a neighborhood \(V \) of \(x \) and a syndetic subset \(A \) of \(T \) such that \(VA \subseteq U \). Choose an index \(\beta \) of \(X \) such that \(xB \subseteq V \). There exists a syndetic subset \(B \) of \(T \) such that \(xB \subseteq \beta \). Let \(H \) be a compact subset of \(T \) such that \(T = BH \). By Lemma 2 there exists \(t_0 \in T \) such that \((xt_0h^{-1}, yt_0h^{-1}) \in \beta \) for all \(h \in H \). Now \(t_0 = b_0h_0 \) for some \(b_0 \in B \) and some \(h_0 \in H \). Since \(t_0h_0^{-1} = b_0 \), it follows that \((xb_0, yb_0) \in B \). Altogether we now have \(xb_0 \subseteq \beta \subseteq V \) and \(yb_0 \subseteq \beta \subseteq V \) whence \(xb_0, yb_0 \subseteq V \) and \((xb_0a, yb_0a) \subseteq U \times U \subseteq \alpha \) for all \(a \in A \). Thus \(t \in b_0A \) implies \((xt, yt) \in \alpha \). Since \(b_0A \) is a syndetic subset of \(T \), the proof is completed.

Theorem 2. Let \(X \) be compact and let \(T \) be locally almost periodic on \(X \). Then there exists a pair of distinct points of \(X \) which is syndetically proximal under \(T \) if and only if \(T \) is not equicontinuous on \(X \).
Proof. Use Theorem 1 and Lemma 3.

Let \(x, y \in X \). The pair \((x, y)\) is said to be \((\text{totally})\) asymptotic under \(T \) provided that if \(\alpha \) is an index of \(X \), then there exists a compact subset \(K \) of \(T \) such that \((x_t, y_t) \in \alpha\) for all \(t \in T - K \).

A study (see below) of the example in [1] will reveal that the phrase "syndetically proximal" in Theorem 2 cannot be replaced by "asymptotic," even though it is assumed in addition that \(X \) is a compact plane set, \(T \) is a discrete flow, \(X \) is minimal under \(T \), and \(T \) is regularly almost periodic at some points of \(X \).

We indicate briefly why this example cannot possess even a unilaterally asymptotic pair of distinct points. We adopt here the notation used in [1] and we assume familiarity with the paper. First of all, \(T \) is locally almost periodic since \(X \) is minimal under \(T \) and some points of \(X \) are regularly almost periodic. This is an application of a general theorem (cf. [2; 5.24]). Since \(f \) has equicontinuous powers, no two components of \(X \) are even proximal. Consequently, any asymptotic pair of points belonging to \(X \) would have to both lie in the same component. Now the nondegenerate components cannot have lengths which tend to zero under iteration of \(T \). This is shown as follows:

Let \(x \) be the point \((3^0, 3^0 + 3^1, 3^0 + 3^1 + 3^2, \ldots)\) of \(A \). The component \(V \) of \(X \) which lies over \(x \) is the longest and indeed has length 1. Let \(\alpha_0, \ldots, \alpha_n \) be an arbitrary finite sequence made up of 0, 1, 2. If the map \(f \) is applied \((\alpha_0 - 1)3^0 + (\alpha_1 - 1)3^1 + \cdots + (\alpha_n - 1)3^n \) times to \(x \), then the point \((\alpha_0 3^0, \alpha_0 3^0 + \alpha_1 3^1, \ldots)\) is obtained. Consequently the images of \(V \) constitute all nondegenerate components of \(X \) and are of length 1/2 infinitely often in both directions.

Bibliography

University of Pennsylvania