We establish here the monotonic character of the zeros (modulo 1) of
\[\int_{z}^{\infty} \frac{f(t)}{t} \, dt, \quad x > 0, \]
where \(f(t) \) satisfies the conditions

(C1). \(f(t) \geq 0 \) for \(0 \leq t < 1 \);
(C2). \(f(t) \neq 0 \) on any subinterval of \(0 \leq t < 1 \);
(C3). \(f(t+n) = (-1)^n f(t) \) for \(n = 1, 2, 3, \ldots \);
(C4). \(f(t)/t \) is Lebesgue integrable on \(0 \leq t \leq 1 \).

It is clear that these conditions imply that the integral (1) has precisely one zero, say \(z_n \), in the interval \(n < x < n+1 \).

Let \(C \) be defined (uniquely) by the conditions

\[2 \int_{0}^{C} f(t) \, dt = \int_{0}^{1} f(t) \, dt, \quad 0 < C < 1. \]

Now,

(A) \(z_n - n \geq C \) for \(n = 0, 1, 2, \ldots \),
(B) \(z_n - n \to C \) as \(n \to \infty \),
as was shown in [2], even more generally, with the factor \(1/t \) of \(f(t) \) in (1) replaced by a function denoted there by \(g(t) \) of which \(1/t \) is a special case. When \(f(t) = \sin \pi t \), the sequence \(\{ z_n - n \} \) is decreasing, as Harry Pollard has shown, and I. I. Hirschman has observed that Pollard's proof applies equally well to the zeros of

\[\int_{z}^{\infty} g(t) \sin \pi t \, dt \]
where $g(t)$ is completely monotonic in $0 < t < \infty$ [3, pp. 409–411]. (Here $g(t)$ has a meaning different from the one in [2].)

We prove here the following result:

Let $f(t)$ satisfy the conditions (C1)–(C4), and denote by z_n the unique zero of (1) in the interval $n < x < n + 1, n = 0, 1, 2, \ldots$. Then $z_n - n \downarrow C$, where C is defined by (2).

In replacing $\sin \pi t$ in $\sin(\pi x)$ by a more general function the above result extends Theorem 3.2 of [3] in one direction, while Hirschman's observation concerning (3) generalizes that theorem in another fashion by replacing $1/t$ in $\sin(\pi x)$ by an arbitrary completely monotonic function $g(t)$.

In view of (B), it is only the monotonicity of the sequence $\{z_n - n\}_0^\infty$ that need be established. The formula

$$\int_{z_n}^{1+z_n} f(t)G(t)dt = 0. \tag{5}$$

Suppose that $G_0(t)$ is a non-negative increasing function of t for $0 < t < \infty$. By the second mean-value theorem, (A), and (5),

$$(-1)^n \int_{z_n}^{1+z_n} f(t)G(t)G_0(t)dt = (-1)^n G_0(1 + z_n) \int_{e_n}^{1+z_n} f(t)G(t)dt \leq 0,$$

where $z_n < x_n < z_{n+1}$. Thus, if there is an $\alpha, n + C \leq \alpha < n + 1$, for which

$$\int_{\alpha}^{1+z_n} f(t)G(t)G_0(t)dt = 0,$$

then, necessarily, $\alpha \leq z_n$. Since

$$0 = \int_{z_n + 1}^{1+z_n+1} f(t)G(t)dt = - \int_{-1+z_n+1}^{z_n+1} f(t)G(t + 1)dt$$

$$= - \int_{-1+z_n+1}^{z_n+1} f(t)G(t) \frac{G(t + 1)}{G(t)} dt,$$
it follows by this argument that \(z_{n+1} - (n + 1) \leq z_n - n \), provided only that \(G(t+1)/G(t) \) is increasing for \(0 < t < \infty \). We show now that this is the case.

Recalling the definition of \(G(t) \), it is easy to verify that \(G(t) + G(t+1) = 2/t \) [1, p. 20 (7)]. Thus, we may accomplish our aim by showing that \(tG(t) \) is decreasing for \(t > 0 \).

First proof. (This was suggested in conversation with M. Riesz.) We have [1, p. 20(2)]

\[
tG(t) = 2t \int_0^1 \frac{r^{t-1}}{1 + r} \, dr.
\]

Integrating by parts,

\[
tG(t) = 1 + 2 \int_0^1 \frac{r^t}{(1 + r)^2} \, dr,
\]

from which the desired result follows immediately.

Remarks. On successive differentiation, (6) shows that \(tG(t) \) is completely monotonic, \(0 < t < \infty \). This is true also of \(t^\delta G(t) \) for any \(\delta < 1 \), since \(t^\delta G(t) \) can be written as the product of the two completely monotonic functions \(1/t^{1-\delta}, \delta < 1 \), and \(tG(t) \). [That the product of two completely monotonic functions is also completely monotonic follows at once from the successive differentiation of that product by Leibniz's rule.]

Moreover, the restriction \(\delta \leq 1 \) cannot be removed if the function \(t^\delta G(t) \) is to be completely monotonic, \(0 < t < \infty \), since \(t^\delta G(t) \) increases rather than decreases (as required for complete monotonicity), at least for some positive interval of values of \(t \), for any \(\delta > 1 \).

To see this, let \(\delta = 1 + \epsilon, \epsilon > 0 \). Then

\[
[t^{t+\epsilon}G(t)]' = t'[\{(1 + \epsilon)G(t) + tG'(t)\}]
\]

\[
= 2t^\epsilon \sum_{n=0}^{\infty} \frac{(-1)^n}{t + n} \left(1 + \epsilon - \frac{t}{t + n}\right),
\]

where the infinite series representation is found directly or is taken from [1, p. 20 (6), p. 45 (10)].

This series is an alternating series whose first term is positive. The series itself will be shown to be positive for certain values of \(t \), and the function \(t^{t+\epsilon}G(t) \) to be increasing there, once we show that the terms of that series are monotonically decreasing for those values of \(t \). Now, we observe that this is the case if
We note that the expression in braces decreases as \(n \) increases. Thus, the left member of (7) is greatest when \(n = 0 \), i.e., its maximum is \((2t+1)/(t+1)\). But this maximum is \(\leq 1+\epsilon \) when \(t^{-1} \geq (1-\epsilon)/\epsilon \) and so we have shown that \(t^{1+\epsilon}G(t) \) cannot be completely monotonic, \(0 < t < \infty \), for any \(\epsilon > 0 \) whatever.

Some interest may attach to the above observation, since \(G(t) \) is a standard "special function" and can be defined in terms of \(\psi(t) \), the logarithmic derivative of the gamma function. Doing so, we can express these results as follows:

The function \(t^\delta [\psi(t+1/2) - \psi(t)] \) is completely monotonic, \(0 < t < \infty \), if and only if \(\delta \leq 1 \).

If \(1 < \delta < 2 \), the function increases for \(0 < t \leq (\delta - 1)/(2 - \delta) \).

If \(\delta \geq 2 \), it increases for all \(t > 0 \).

In case \(\delta = 1 \), this shows [1, p. 20 (6)] that the hypergeometric function \(_2F_1(1, t; 1+t; -1)\) is also completely monotonic, \(0 < t < \infty \).

SECOND PROOF. To show alternatively that \(tG(t) \) decreases as \(t \) increases, \(0 < t < \infty \), we put \(2t = 1/s \) and use [1, p. 20 (6)], whence

\[
2tG(2t) = 2 \sum_{n=0}^{\infty} \frac{(-1)^n}{1/s + n} = 2 \sum_{n=0}^{\infty} \frac{(-1)^n}{1 + ns} = 2 \int_{0}^{1} \frac{dr}{1 + r^s}.
\]

The last expression clearly decreases from 2 to 1 as \(s \) decreases from \(\infty \) to 0, that is, as \(t \) increases from 0 to \(\infty \).

REFERENCES

1. A. Erdélyi et al, Higher transcendental functions (based, in part, on notes left by Harry Bateman), vol. 1, New York, 1953.

UNIVERSITY OF WASHINGTON AND
PHILANDER SMITH COLLEGE