1. Introduction. It follows immediately from the definitions that if a complemented lattice is modular then no element in the lattice can have distinct comparable complements. For lattices of finite dimension Dilworth [2] has demonstrated a converse . . . every complemented, nonmodular lattice of finite dimension contains a complemented nonmodular sublattice of order five. It is the purpose of this note to extend Dilworth's result to atomic lattices; the theorem proved may be stated as follows:

Every complemented, atomic lattice with unique comparable complements is modular.

An easy corollary of this is that every atomic lattice with unique complements is a Boolean algebra. This corollary improves the theorem of Birkhoff-Ward [1] stating that every complete atomic lattice with unique complements is a Boolean algebra.

It should be pointed out that the theorem of Dilworth [3] to the effect that every lattice is a sublattice of a lattice with unique complements shows that the word atomic cannot be deleted from the theorem stated above.

Finally, I would like to thank Professor Dilworth for raising the question settled here.

2. Notation and terminology. Lattice inclusion will be denoted by \(a \supseteq b \), proper inclusion by \(a \succ b \), covering by \(a \succsim b \). A lattice is said to be atomic if it has a null element, \(z \), and if every non-null element contains an element covering \(z \). An element \(a' \) is said to be a complement of \(a \) if \(a \cap a' = z \), \(a \cup a' = u \), the unit element of the lattice. If every element of the lattice has a complement, the lattice is said to be complemented. For \(a \supseteq b \) in a lattice the symbol \(a/b \) denotes the sublattice of all \(x \) with \(a \supseteq x \supseteq b \).

3. Proof of the theorem. Throughout this section the lattice \(L \) to which we refer is a complemented, atomic lattice in which \(x \cup y = x \cup w = u \), \(x \cap y = x \cap w = z \), \(y \supseteq w \) implies \(y = w \), that is, comparable complements are unique. We tacitly assume \(L \) has at least two elements. The proof that \(L \) is modular is made by first showing that the
Dedekind transposition principle holds for one-dimensional quotients \(a > a \cap b \) if and only if \(a \cup b > b \). This, together with the uniqueness of comparable complements, is then used to show that \(L \) enjoys one of the essential properties of a projective geometry. . . Lemma 5. This in turn is used to show that comparable relative complements are unique and hence that \(L \) is modular. I would like to thank the referee for pointing out a superfluous lemma in the original proof of the theorem.

Lemma 1. If \(p > z \) and \(s = p \cup x \vee t \), then \(u > x \cup t \) for any complement, \(t \), of \(s \).

It is sufficient to show that \(x \cup t \) is a complement of \(p \), since comparable complements are unique. For this one observes that \(p \cup (x \cup t) = (p \cup x) \cup t = s \cup t = u \); therefore \(p \cup (x \cup t) \supseteq x \cup t \), again since comparable complements are unique, and hence \(p \cap (x \cup t) = z \).

Corollary. For each \(x \not\equiv u \) in \(L \) there exists an \(m \) such that \(u > m \supseteq x \).

Lemma 2. If \(p > x \cap p = z \), then \(p \cup x > x \).

Let \(a = p \cup x \) and let \(b \) be a complement of \(a \). Then by Lemma 1, \(u > x \cup b \). We first show that if \(s \not\equiv a \) is in \(a / x \) then \(t = a \cap (x \cup b) \supseteq s \). This shows in particular that \(a > t \). Since \(s \supseteq a \), \(p \cup s = a \) and therefore \(s \supseteq b \). But \(s \supseteq b \supseteq x \cup b \) and \(u > x \cup b \) implies \(x \cup b = s \cup b \) implies \(t \supseteq s \). Now choose a complement, \(w \), of \(t \). To prove the lemma it is sufficient to show that \(w \) is also a complement of \(x \). If \(x \cup (a \cap w) = a \) we are through, for then \(x \cup w \supseteq a \) implies \(x \cup w \supseteq a \cup w \cup w = u \). However, if \(x \cup (a \cap w) \not\equiv a \) then by our previous observation \(t \supseteq x \cup (a \cap w) \) implies \(t \supseteq a \cap w \) implies \(a \cap w = z \). This supplies a contradiction in the form of \(w \) having distinct comparable complements \(a \) and \(t \).

Lemma 3. If \(x \supseteq y \), then there exists \(p > z \), such that \(x \supseteq p \), \(y \cap p = z \).

Suppose \(y \supseteq p \) whenever \(x \supseteq p > z \) and choose a complement, \(v \), of \(x \cap y \). Then \(x \cap w \not\equiv s \) and \(p \) exists with \(x \cap v \supseteq p > z \). Now \(y \supseteq p \), a contradiction. This lemma says that any \(x \) in \(L \) is the union of all the points it contains . . . whether or not \(L \) is complete.

Lemma 4. The rule \(a > a \cap b \) if and only if \(a \cup b > b \) is valid in \(L \).

If \(a > a \cap b \), then by Lemma 3 there exists \(p > z \) such that \(a = p \cup (a \cap b) \). Then \(a \cup b = p \cup (a \cap b) \cup b = p \cup b > b \) by Lemma 2. The corollary to Lemma 1 gives the dual of Lemma 3, and this combined with the dual of Lemma 2 gives the opposite implication.
Lemma 5. If \(a \not\subseteq u \) and \(b \) is a complement of \(a \) then for every \(p > z \) in \(L \) there exist \(r, s \) in \(L \) such that \(a \supseteq r > z \), \(b \supseteq s > z \) and \(r \cup s \supseteq p \).

We may assume \(a \cap p = b \cap p = z \) or there is nothing to prove. Then \(p \cup a > a \) and by the duals of Lemmas 3 and 1, \(s = b \cap (p \cup a) > z \). Hence \((p \cup s) \cup a = p \cup a > a \) implies \(p \cup s > (p \cup s) \cap a = r \) by the previous lemma. Therefore \(p \cup r = p \cup s > p \) implies \(r > r \cap p = z \) (again using Lemma 5). This proves the lemma.

Lemma 6. If \(a \supseteq b \), there exists an element \(c \) such that \(b \cup c = a \) and \(b \cap c = z \).

Choose any complement, \(d \), of \(b \) and put \(c = a \cap d \). Combining Lemmas 3 and 5 it is easy to see that this \(c \) has the desired properties.

Theorem. \(L \) is modular.

Proof. Suppose \(e \supseteq f \) are relative complements of \(b \) in \(a / c \). Using Lemma 6 and its dual choose a relative complement, \(x \), for \(c \) in \(b / z \) and a relative complement, \(v \), for \(a \) in \(u / x \). Then \(e \) and \(f \) are both complements of \(v \) and so \(e = f \). This proves the theorem.

Bibliography

The University of Michigan