Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the steady state solutions of the heat equation


Author: W. Fulks
Journal: Proc. Amer. Math. Soc. 7 (1956), 766-771
MSC: Primary 35.0X
DOI: https://doi.org/10.1090/S0002-9939-1956-0081411-7
MathSciNet review: 0081411
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Ahlfors, Complex analysis, New York, 1953.
  • [2] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, New York, 1953.
  • [3] O. D. Kellogg, Foundations of potential theory, New York, 1929.
  • [4] A. N. Milgram and P. C. Rosenbloom, Harmonic forms and heat conduction I: closed Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951). MR 0042769 (13:160a)
  • [5] -, Heat conduction on Riemannian manifolds II: heat distribution on complexes and approximation theory, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951). MR 0044886 (13:493a)
  • [6] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. on Pure and Appl. Math. vol. 6 (1953). MR 0055544 (14:1089e)
  • [7] P. C. Rosenbloom, Notes on partial differential equations, University of Minnesota (in preparation).
  • [8] A. Tychonoff, Sur l'équation de la chaleur de plusieurs variables, Bulletin de l'Université d'État de Moscow. I. (1938).
  • [9] D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. vol. 55 (1944). MR 0009795 (5:203f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35.0X

Retrieve articles in all journals with MSC: 35.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1956-0081411-7
Article copyright: © Copyright 1956 American Mathematical Society

American Mathematical Society