A NOTE ON THE ALGEBRA OF BOUNDED FUNCTIONS. II

KENNETH G. WOLFSON

1. Let K be a commutative B^*-algebra with identity 1 (with $\|k^*k\| = \|k\|^2$ for all $k \in K$, and $\|1\| = 1$). Then K is equivalent (isomorphic in a norm and * preserving manner) to the algebra $C(M)$ of all continuous complex-valued functions on the compact Hausdorff space M (its structure space) [1; 2]. In [5] we have given necessary and sufficient conditions that K be equivalent to $B(X)$, the ring of all bounded complex-valued functions on the discrete space X. These conditions were ideal-theoretic, involving the annihilets (anihilating ideals) of K, and did not depend on the representation $C(M)$. Using the representation $C(M)$ two further characterizations of $B(X)$ are given in [3], one involving the properties of the space M, and the other the notion of projection. The characterizations in [3] are derived independently of the one in [5], and in fact no attempt is made in [3] to relate directly the ideal-theoretic conditions with the notions used there. In this note, we show how the characterizations in [3] can be derived from the characterization in [5] by relating directly the ideal-theoretic properties of K with the properties of the structure space M, and with the idea of projection. In particular, the lattice of annihilets of K is anti-isomorphic to the lattice of regular open sets in M (Lemma 1). Another characterization of $B(X)$ (Theorem 4) is a byproduct of our procedure.

2. The notation will follow that in [5]. If $G \subseteq K$ then $R(G)$ is the set of all functions $k \in K = C(M)$ such that $kg = 0$ for all $g \in G$. Such ideals were called annihilets. $N(G)$ is the set of $y \in M$ such that $g(y) = 0$ for all $g \in G$. If $S \subseteq M$, then $A(S)$ is the set of functions f such that $f(x) = 0$ for all $x \in S$. Since $N(G) = \bigcap_{g \in G} N(g)$, it is a closed set. Now by following the arguments of Lemma 1 of [5], and using the fact that if O is open in a compact space and $x \in O$, there exists a function $f \in K$ with $f(x) = 1$ and $f(O') = 0$, we have

- (1) $R(G) = A[N(G)]'$ for $G \subseteq K$;
- (2) $R[A(S)] = A(S')$ if S is a closed subset of M;
- (3) $N[A(S)] = S$ if S is a closed subset of M.

Now (1) and (2) show that an annihilet of K is the set of all functions vanishing on an open set of M and conversely. Since $A(S) = A(S)$

Received by the editors September 2, 1955.

852
and $S \leq \text{int } S \leq \bar{S}$ for any open set S, an annulet is the set of functions vanishing on a regular open set and conversely. (S is a regular open set if $S = \text{int } \bar{S}$ where $\text{int } \bar{S}$ is the largest open set in \bar{S}.) If S and T are regular open sets such that $A(S) = A(T)$, then $\bar{S} = \bar{T}$ by (3) and hence $S = \text{int } (\bar{S}) = \text{int } (\bar{T}) = T$. We have:

Lemma 1. The lattice of annulets of K is anti-isomorphic to the lattice of regular open sets in M.

Lemma 2. The following are equivalent:

1. The sum of two annulets is an annulet.
2. Every annulet is generated by an idempotent.
3. Every regular open set in M is closed.

Proof. Assume (1) and let $A(S)$ be any annulet, where S is a regular open set. Let $T = S'$. Then T is a regular open set such that $S \cap T = 0$. Now $A(S) \cup A(T)$ (the smallest annulet containing $A(S)$ and $A(T)$) $= A(S) + A(T)$ since this is an annulet by (1). But $A(S) \cup A(T) = A(S \cap T) = A(0) = K$ by Lemma 1. Since $A(S) \cap A(T) = 0$ we have $A(S) \oplus A(T) = K$, and it follows as in Theorem 3 of [5] that $A(S) = eK$ where e is the characteristic function of S'.

Now assume (2), let S be a regular open set, and $A(S)$ the corresponding annulet. Then $A(S) = eK$, so $N(e) = N(eK) = N[A(S)] = \bar{S}$. Hence \bar{S} is open and closed. Then $S = \text{int } \bar{S} = \bar{S}$, and S is closed.

Now assume (3) and let S, T be regular open sets ($S \cap T$ is also regular). Since S is open and closed, $A(S)$ is generated by the characteristic function of S'. Then $A(T), A(S \cap T)$ are similarly generated by idempotents, and the proof can now be completed as in the proof of Theorem 2 of [5] to show $A(S) + A(T)$ is the annulet $A(S \cap T)$.

Lemma 3. The following statements are equivalent:

1. Every nonzero closed ideal of K contains a minimal ideal.
2. For each $k \neq 0$, there exists a minimal projection e such that $ke \neq 0$.
3. The space M contains a dense subset of isolated points.

Proof. Assume (1) and let $k \in K$, $k \neq 0$. Let $J = Ke$ be a projection e [4, p. 64] since any idempotent in $K = C(M)$ is obviously self-adjoint. Now Ke is a simple commutative ring with identity, hence a field. By the Gel-fand-Mazur theorem Ke is isomorphic to the complex numbers, so that e is a minimal projection. If $ke = 0$, $(Kk)e = 0$, $Je = 0$, $e^2 = e = 0$, a contradiction, so that (2) follows.

The fact that (2) implies (3) is proven in Theorem 2 of [3].

Now assume (3), and let J be a closed ideal $\neq 0$ so that $k \neq 0$, $k \in J$. If $ke \neq 0$ for some minimal projection e, then $ke = \lambda e$ for com-
plex \(\lambda, e = \lambda^{-1}ke \in J \) and \(J \) contains the ideal \(Ke \) which is obviously minimal, since it is a field. Assume if possible that \(ke = 0 \) for all minimal projections \(e \). Let \(X_0 \) be the dense set of isolated points. Each minimal projection \(e \) is the characteristic function of a point of \(X_0 \) [3, Theorem 2]. Hence \(k(x_0) = 0 \) for all \(x_0 \in X_0 \), so that \(k = 0 \), since \(X_0 \) is dense in \(M \). This contradicts \(k \neq 0 \) in \(K \), and completes the proof.

Lemmas 2 and 3 and the characterization of [5] give us:

Theorem 4. \(K \) is equivalent to \(B(X) \) if and only if

1. The structure space \(M \) contains a dense set \(X_0 \) of isolated points.
2. Every regular open set in \(M \) is closed.

3. In [3] it was shown that \(K = C(M) \) is equivalent to \(B(X) \) if and only if either of the following sets of conditions is satisfied:

 A. (1) \(M \) contains a dense subset \(X_0 \) of isolated points.
 (2) If \(Q \subseteq X_0 \), then there exists an open and closed subset \(S \) of \(M \) such that \(Q \subseteq S \) and \(S \cap X_0 = Q \).

 B. (1) For each \(k \neq 0 \) in \(K \) there exists a minimal projection \(e \) with \(ke \neq 0 \).
 (2) For each subcollection \(A \) of the collection \(P \) of minimal projections, there exists a projection \(e_A \) such that \(e_A e_p = e_p \) for \(p \in A \) and \(e_A e_p = 0 \) for \(p \notin A \).

 The conditions of A are equivalent to those of B directly. This is essentially proved in Theorem 2 of [3]. That the (1)'s are equivalent is pointed out in our Lemma 3. The (2)'s, for example, are each obviously equivalent to the statement: If \(A \) is a subset of \(X_0 \), there exists a function \(e(x) \) in \(C(M) \) such that \(e(x) = 1 \) if \(x \in A \), and \(e(x) = 0 \) if \(x \in X_0 - A \).

Now assume that the conditions of Theorem 4 hold and let \(Q \subseteq X_0 \). Then \(Q \) is open and \(Q \subseteq int Q \subseteq \overline{Q} \). But since each subset of \(X_0 \) is open (as a union of points which are open) it is also closed in the relative topology of \(X_0 \). Hence \(Q = X_0 \cap \overline{Q} \) and this implies \(Q = X_0 \cap int \overline{Q} \). Then \(S = int \overline{Q} \) is open and closed (being a regular open set) and the conditions of \(A \) are satisfied.

Now assume the conditions of \(A \), and let \(S \) be a regular open set in \(M \). Let \(Q \) be the complement of \(X_0 \cap S \) in \(X_0 \). Then \(\overline{X_0 \cap S} \cap \overline{Q} = \overline{X_0} = M \). Now by (2) of \(A \), there exists an open and closed set \(T \) such that \(X_0 \cap S \subseteq T \), but \(Q \subseteq T' \). Thus \(\overline{X_0 \cap S} \subseteq T \), \(\overline{Q} \subseteq T' \), and \((X_0 \cap S) \cap \overline{Q} = 0 \), and \(\overline{X_0 \cap S} \) and \(\overline{Q} \) are open, as well as closed. Now since \(S \cap Q = 0 \) and \(S \) is open, \(S \cap \overline{Q} = 0 \). Since \(\overline{Q} \) is open \(S \cap \overline{Q} = 0 \). Hence \(S \subseteq \overline{Q'} = \overline{X_0 \cap S} \). Thus \(S = X_0 \cap S \) and \(S \) is open. Then \(S = int \overline{S} = \overline{S} \), and \(S \) is closed. Hence the conditions of Theorem 4 are equivalent to \(A \) and \(B \).
LIE SIMPLICITY OF A SPECIAL CLASS OF ASSOCIATIVE RINGS

WILLARD E. BAXTER

Given an associative ring A, by introducing a new multiplication we can form from it a new ring called the Lie ring of A. This multiplication is defined by $[a, b] = ab - ba$ for all $a, b \in A$. If U is an additive subgroup of A and if for arbitrary $u \in U$, $a \in A$, $ua - au \in U$, then U is said to be a Lie ideal of A. If X, Y are additive subgroups of A then by $[X, Y]$ we mean the additive subgroup generated by all the elements $xy - yx$, where $x \in X, y \in Y$. An additive subgroup U of $[A, A]$ is said to be a proper Lie ideal of $[A, A]$ if $U \neq [A, A]$ and if $[U, [A, A]] \subseteq U$.

In [4], Herstein proved that if A is a simple ring of characteristic not 2 or 3, and if U is a proper Lie ideal of $[A, A]$, then U is contained in Z, the center of A. In this paper we settle the question in the open case where A is a simple ring of characteristic 2 or 3. The above theorem becomes sharpened to:

Theorem 1. If A is a simple ring and if U is a proper Lie ideal of $[A, A]$, then U is contained in the center of A, except for the case where A is of characteristic 2 and 4 dimensional over its center, a field of characteristic 2.

Presented to the Society, October 22, 1955; received by the editors September 26, 1955.

1 The results of this paper will comprise the beginning portion of a thesis, which will be presented to the Faculty of the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy.