A NOTE ON THE SEPARATION OF CONNECTED SETS BYFINITE SETS

C. E. BURGESS

A connected set K is said to be separated by a subset H of K if $K - H$ is not connected. J. R. Kline has shown that if n is an integer greater than two and the plane continuum M is separated by every subset of M consisting of n points, then M is separated by some set consisting of $n - 1$ points [1, Theorem 5]. A stronger conclusion has been obtained by G. T. Whyburn for the case where M is a locally compact connected metric space. In fact, it follows from Whyburn’s results that if every set consisting of n points separates the nondegenerate locally compact connected metric space M, then M is a Menger regular curve and contains uncountably many mutually exclusive pairs of points each pair of which separates M [2, p. 313]. It is the purpose of this note to present a proof of a related theorem for a connected topological space.

Theorem. If S is a nondegenerate connected topological space and D is an open set such that each infinite subset of D contains a finite set that separates S, then some pair of points in D separates S.

The following two lemmas will be used in the proof of this theorem.

Lemma 1. If S is a connected topological space, M_1 and M_2 are mutually exclusive closed sets such that M_2 does not separate S, and H is a connected subset of $S - (M_1 + M_2)$ such that some open set contains M_1 and lies in $H + M_1$, then $M_1 + M_2$ does not separate S.

Proof. Suppose $S - (M_1 + M_2)$ is the sum of two mutually separated sets X and Y, where X contains the connected set H. Since some open set lies in $H + M_1$ and contains M_1, it follows that no point of M_1 is a limit point of Y. This leads to the contradiction that $S - M_2$ is the sum of the two mutually separated sets $X + M_1$ and Y.

Lemma 2. If D is an open set in a connected topological space S, L is a finite subset of D consisting of more than two points such that $S - L$ is the sum of two mutually separated sets H and K, and no subset of D with fewer points than L separates S, then for each point p of $D - H$ the set $H + L - p$ is connected.

Presented to the Society, September 2, 1955; received by the editors July 22, 1955 and, in revised form, January 16, 1956.

1 The definition of a topological space given in [3] is used here.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Suppose there is a point \(p \) of \(D \cdot H \) such that \(H + L - p \) is the sum of two mutually separated sets \(X \) and \(Y \). Since \(S - P \) is connected, it follows that both \(X \) and \(Y \) intersect \(L \). Let \(n \) denote the number of points in \(L \). Since \(n > 2 \), it follows that one of the sets \(X \cdot L + p \) and \(Y \cdot L + p \) consists of less than \(n \) points. This involves a contradiction since each of these two subsets of \(D \) separates \(S \).

Proof of theorem. Suppose that no pair of points in \(D \) separates \(S \). Let \(L_1 \) be a subset of \(D \) such that (1) \(S - L_1 \) is the sum of two mutually separated sets \(H_1 \) and \(K_1 \) and (2) no set in \(D \) with fewer points than \(L_1 \) separates \(S \). Let \(p_1 \) be a point of \(K_1 \cdot D \). By Lemma 2, \(K_1 + L_1 - p_1 \) is connected.

Let \(L_2 \) be a subset of \(D \cdot H_1 \) such that (1) \(S - L_2 \) is the sum of two mutually separated sets \(H_2 \) and \(K_2 \), where \(K_2 \) contains the connected set \(K_1 + L_1 \), and (2) no set in \(D \cdot H_1 \) with fewer points than \(L_2 \) separates \(S \). Let \(p_2 \) be a point of \(D \cdot [K_2 - (K_1 + L_1)] \). By Lemma 2, \(K_2 + L_2 - p_2 \) is connected, and since \(K_1 + L_1 - p_1 \) is connected and \(K_1 \) is an open set lying in \(K_1 + L_1 \), it follows from Lemma 1 that \(p_1 + p_2 \) does not separate the connected set \(K_2 + L_2 \).

Let \(L_3 \) be a subset of \(D \cdot H_2 \) such that (1) \(S - L_3 \) is the sum of two mutually separated sets \(H_3 \) and \(K_3 \), where \(K_3 \) contains the connected set \(K_1 + L_1 + L_2 \), and (2) no set in \(D \cdot H_2 \) with fewer points than \(L_3 \) separates \(S \). Let \(p_3 \) be a point of \(D \cdot [K_3 - (K_2 + L_2)] \). By Lemma 2, \(K_3 + L_3 - p_3 \) is connected, and since \(K_2 + L_2 - (p_1 + p_2) \) is connected and \(K_2 \) is an open set lying in \(K_2 + L_2 \), it follows from Lemma 1 that \(p_1 + p_2 + p_3 \) does not separate the connected set \(K_3 + L_3 \).

By continuing this process indefinitely, a sequence of distinct points \(p_1, p_2, p_3, \ldots \) of \(D \) can be obtained such that, for each \(n \), \(p_1 + p_2 + \cdots + p_n \) does not separate the connected set \(K_n + L_n \). Since each \(H_n + L_n \) is connected, it readily follows that for each \(n \), \(p_1 + p_2 + \cdots + p_n \) does not separate \(S \). This leads to the contradiction that no finite subset of the infinite set \(p_1 + p_2 + p_3 + \cdots \) separates \(S \).

Corollary. If \(n \) is a positive integer and the nondegenerate connected topological space \(S \) is separated by every set consisting of \(n \) points, then each open set contains a pair of points that separates \(S \).

References

University of Utah