ON H-SPACES WITH TWO NONTRIVIAL HOMOTOPY GROUPS

ARTHUR H. COPELAND, JR.

Introduction. Although several topologists (e.g. H. Hopf and A. Borel) have found necessary algebraic conditions for a space to admit an H-space structure, very little has been done towards obtaining sufficient conditions. The author believes that the present paper contains essentially the first result in the latter direction.

Let \(Y \) be a topological space with \(y_0 \in Y \), \(Y \cup Y = Y \times y_0 \cup y_0 \times Y \subset Y \times Y \). If \(\phi: Y \cup Y \to Y \) is the map given by \(\phi(y, y_0) = (y_0, y) = y \), then the problem of finding an H-space structure on \(Y \) may be expressed as the problem of extending \(\phi \) to a map \(\phi': Y \times Y \to Y \). It is found that if \(Y \) is a 1-connected, locally finite CW-complex [3], the obstructions to extending \(\phi \) may be expressed in terms of Postnikov invariants [4] and partial extensions of \(\phi \). If \(Y \) has only two nonzero homotopy groups then there is at most one nontrivial obstruction. This will be zero if and only if the Eilenberg-MacLane \(k \)-invariant of \(Y \) is primitive.

The relation between the existence of an H-structure and the vanishing of the J. H. C. Whitehead bracket products is investigated. This leads to a description of the lowest-dimensional bracket products on spaces whose first two nontrivial homotopy groups are in dimensions \(n \) and \(2n - 1 \) (\(n > 1 \)).

1. This section presents much of the notation to be used, some discussion preliminary to the main result of the paper and an example of a space which is not an H-space, and yet has trivial bracket products.

If \(f_i: X_i \to Y_i \) (\(i = 1, 2 \)) are maps then the map \(f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2 \) is defined by \(f_1 \times f_2(x_1, x_2) = (f_1(x_1), f_2(x_2)) \) for \(x_i \in X_i \). If \(g_1: Y_1 \to Z_1 \), then \(g_1 \circ f_1: X_1 \to Z_1 \) is the map given by \(g_1 \circ f_1(x) = g_1(f_1(x)) \) for \(x \in X \), \(I = [0, 1] \) is the closed unit interval; \(I^m = I \times \cdots \times I \) (\(m \)-factors) is the unit \(m \)-cube; \(I^m \) is the usual boundary set of \(I^m \).

The discussion is restricted to locally finite CW-complexes, for if \(Y \) is a locally finite CW-complex then \(Y \times Y \) is a CW-complex whose (closed) \(m \)-cells may be taken to be of the form \(E^m = E^p \times E^q \) (\(p + q = m \); \(E^p, E^q \) are, respectively, \(p \)-, and \(q \)-cells of \(Y \)) [6]. The characteristic map of \(E^m \) is \(e^m = e^p \times e^q \); \(I^m \to E^m \) where \(e^p, e^q \) are character-
istic maps of E^p, E^q and I^m is identified with $I^p \times I^q$. Given cochains $c^p \in C^p(Y; G_1), c^q \in C^q(Y; G_2)$ and a pairing $\xi : G_1 \otimes G_2 \to G$ we form a cochain $c^p \times c^q \in C^{p+q}(Y \times Y; G)$ whose value on a cell $E^p \times E^q$ is $c^p \times c^q(E^p \times E^q) = \xi(c^p(E^p) \otimes c^q(E^q))$ and which is zero elsewhere. If c^p, c^q are cocycles then $c^p \times c^q$ is, and the corresponding cohomology classes are $[c^p], [c^q], [c^p] \times [c^q] = [c^p \times c^q]$. If X is a CW-complex, its m-skeleton will be designated by X^m. The map $\phi : Y \to Y$, presented in the introduction, will be called the folding map of Y. If $f : A \to B$ is a map, its homotopy class will be designated by $[f]$.

If the folding map has been extended over $Y \cup (Y \times Y)^m$ then the obstruction to extending over the $(m + 1)$-skeleton is in the cohomology group $H^{m+1}(Y \times Y, Y \vee Y; \pi_m(Y))$.

In case Y is $(n - 1)$-connected, $(Y \times Y, Y \vee Y)$ will be $(2n - 1)$-connected.

Proposition 1. The obstruction in dimension $2n$ to extending the folding map is

$$d^n \times d^n \in H^{2n}(Y \times Y, Y \vee Y; \pi_{2n-1}(Y))$$

where $d^n \in H^n(Y, Y; \pi_n(Y))$ is the characteristic class for Y and the pairing of $\pi_n(Y) \otimes \pi_n(Y)$ into $\pi_{2n-1}(Y)$ is the J. H. C. Whitehead bracket product.

Proof. We may replace Y by a space whose $(n - 1)$-skeleton is a point (see §3). Then the $(2n - 1)$-skeleton of $Y \times Y$ is contained in $Y \vee Y$ so that the obstruction cocycle to extending ϕ is given by:

$$c^{2n}(E^n_1 \times E^n_2) = \{ \phi \circ (e^n_1 \times e^n_2) \mid I^{2n} \}$$

where E^n_1, E^n_2 are cells of Y and e^n_1, e^n_2 their characteristic maps. Note that

$$\{ \phi \circ (e^n_1 \times e^n_2) \mid I^{2n} \} = \{ \{ e^n_1 \}, \{ e^n_2 \} \}$$

with $\{ e^n_1 \}, \{ e^n_2 \}$ regarded as elements of $\pi_n(Y)$ [1]. But d_n is the class of the cocycle c^n given by

$$c^n(E^n) = \{ e^n \}.$$

Thus $c^{2n} = c^n \times c^n$.

Corollary 2. $c^{2n} = 0$ if and only if $[\alpha, \beta] = 0$ for $\alpha, \beta \in \pi_n(Y)$.

Proof. Suppose $c^{2n} = 0$. Since $H_n(Y) \approx \pi_n(Y)$ the characteristic maps of n-cells generate $\pi_n(Y)$. Thus $[\alpha, \beta] = 0$ when α, β are in this set of generators; hence $[\alpha', \beta'] = 0$ for all $\alpha', \beta' \in \pi_n(Y)$. The converse is trivial.
On the other hand, if Y is an H-space then all bracket products vanish. This raises the question: if Y is a CW-complex and $[\pi_p(Y), \pi_q(Y)] = 0$ for $p, q > 0$, is Y an H-space? The answer is negative, and we present a counter-example:

We construct a CW-complex, K, by specifying its m-skeleta, K^m. Let $n > 2$ be an integer and p an odd prime. The $2n$-skeleton of K is taken to be the $2n$-skeleton of a CW-complex which is an Eilenberg-MacLane space of type (Z_p, n), where Z_p is the integers mod p. There are no cells in dimension $2n + 1$ ($K^{2n+1} = K^{2n}$) and in higher dimensions, cells are appended so that $\pi_i(K) = 0$ for $i > 2n$ [7].

This creates a space whose homotopy groups are trivial except in dimensions n and $2n$. Thus all bracket products vanish. Also note that $H^n(K; Z_p) \approx H^{n+1}(K; Z_p) \approx Z_p$ since the cohomology groups in these dimensions are those of a space of type (Z_p, n). The $(2n+1)$-cohomology group is zero, since there are no $(2n+1)$-cells.

Now, K is not an H-space, for if it were, its cohomology ring would be a Hopf algebra and the cup product of an element of $H^n(K; Z_p)$ with an element of $H^{n+1}(K; Z_p)$ would be nonzero, contradicting $H^{2n+1}(K; Z_p) = 0$ [2].

2. The main result. Let Y be a 1-connected CW-complex, and suppose that the folding map has been extended to $\psi: Y \vee Y \cup (Y \times Y)^m \to Y$. Let X be a CW-complex consisting of Y united with i-cells, E_i, $(i > m)$ such that $\pi_i(X) = 0$ for $i \geq m$. Note that below dimension m, the inclusion map induces isomorphisms of the homotopy groups of X and Y.

Proposition 3. X is an H-space.

Proof. The m-skeleta of X and Y are the same, so that $(X \times X)^m = (Y \times Y)^m$. Thus ϕ provides an extension $\psi': X \vee X \cup (X \times X)^m \to X$. But $H^{i+1}(X \times X, X \vee X; \pi_i(X)) = 0$ for $i > m$, whence all obstructions to extending ψ' vanish. One such extension, let us call it $\psi: X \times X \to X$, is chosen for the structure map of X.

The condition $\pi_i(X) = 0$ for $i \geq m$ also implies that any two extensions of ψ' will be homotopic.

In the diagram below, i_1^*, \ldots, i_5^* are homomorphisms induced by the appropriate inclusion maps: ψ^*, ψ_i^* are induced by ψ. The coefficient group for each of these cohomology groups is $\pi_m(Y)$. This symbol has been omitted to save space. It is well known that i_1^* sends $H^{m+1}(X \times X, X \vee X; \pi_m(Y))$ isomorphically onto a direct summand of $H^{m+1}(X \times X; \pi_m(Y))$. This direct sum decomposition induces the homomorphism ρ. The composition $\rho \circ i_1^*$ is the identity automorphism of $H^{m+1}(X \times X, X \vee X; \pi_m(Y))$, and the kernel of ρ is essen-
tially $H^{m+1}(X \vee X; \pi_m(Y))$. The diagram is commutative.

$$
\begin{array}{c}
\xymatrix{
H^{m+1}(X \vee X) \ar[r]^{i_{2*}} \ar[d]_{i_1*} & H^{m+1}(X \times X, X \vee X) \ar[d]_{\rho} & \ar[l]^{i_2*} \ar[r]^{i_1*} & H^{m+1}(X \times X, X \vee X) \ar[d]_{i_4*} \ar[l]^{i_3*} & H^{m+1}(Y \times Y, Y \vee Y) \ar[d]_{i_4*} \ar[l]^{i_3*} \ar[r]^{i_1*} & H^{m+1}(X, Y) \ar[l]^{i_5*} & \}
\end{array}
$$

Let $k' \in H^{m+1}(X, Y; \pi_m(Y))$ be the first obstruction to retracting X onto Y, and $k = i_2^* k' \in H^{m+1}(X; \pi_m(Y))$. The maps $p_1, p_2 : X \times X \to X$ are the projections $p_i(x_1, x_2) = x_i$ for $x_i \in X$, $i = 1, 2$.

Proposition 4. Let $\gamma \in H^{m+1}(Y \times Y, Y \vee Y; \pi_m(Y))$ be the class of the obstruction to extending ϕ to $(Y \times Y)^{m+1} \cup Y \vee Y$. Then

$$
i_2^* \rho(\psi^* - p_1^* - p_2^*) k = \gamma.
$$

Proof. The cohomology class $\psi_1^* k'$ is the first obstruction to extending $(\psi_1 | Y \vee Y \cup (X \times X)^m) = (\phi | Y \vee Y \cup (Y \times Y)^m)$ to $X \times X$ and hence $i_4^* \psi_1^* k' = \gamma$. On the other hand, $i_3^* \psi_1^* k' = \psi^* i_3^* k' = \psi^* k$, and so $i_2^* \rho \psi^* k = i_2^* \rho i_3^* \psi_1^* k' = i_2^* \psi^* k = \gamma$. Finally, $\rho \circ (p_1^* + p_2^*)$ is the trivial homomorphism, whence $i_2^* \rho (\psi^* - p_1^* - p_2^*) k = i_2^* \rho \psi^* k = \gamma$.

If W is an H-space with $\psi, \rho_1, \rho_2 : W \times W \to W$ the structure map and the two projections respectively, then a cohomology class, u, is called *primitive* whenever $(\psi^* - p_1^* - p_2^*) u = 0$.

Theorem 5. The obstruction class, γ, vanishes if and only if k is primitive.

Proof. We already have $i_2^* \rho (\psi^* - p_1^* - p_2^*) k = \gamma$ so that if k is primitive, $\gamma = 0$. To obtain the converse, we first note that i_2^* is an isomorphism since the inclusion map of Y in X induces isomorphisms $H^i(X) \cong H^i(Y)$ for $i \leq m$. But the image of $(\psi^* - p_1^* - p_2^*) k$ in $H^{m+1} \cdot (X \vee X; \pi_m(Y))$ is zero, since $(\psi \mid X \vee X)^* = (p_1 \mid X \vee X)^* + (p_2 \mid X \vee X)^*$. Thus $(\psi^* - p_1^* - p_2^*) k \in i_2^* H^{m+1}(X \times X, X \vee X; \pi_m(Y))$ from which it follows that $\rho (\psi^* - p_1^* - p_2^*) k = 0$ implies $(\psi^* - p_1^* - p_2^*) k = 0$. This completes the proof.

Note that k is essentially the $(m+1)$-Postnikov invariant of Y. The theorem fails to provide a decisive victory over the problem of characterizing H-spaces which are CW-complexes, inasmuch as it depends upon choosing a particular extension, ψ, in each dimension. However, for sufficiently simple spaces the problem can be solved:

Theorem 6. Suppose Y is a CW-complex which has only two non-trivial homotopy groups, $\pi_n(Y)$ and $\pi_m(Y)$, with $1 < n < m$. Then Y is
an H-space if and only if the Eilenberg-MacLane k-invariant of Y is primitive.

Proof. The only nontrivial obstruction to extending the folding
map is in \(H^{m+1}(Y \times Y, Y \vee Y; \pi_m(Y)) \). Thus the space \(X \) is of type
\((\pi_n(Y), n)\) and \(k \) may be identified with the k-invariant, \(k_n^{m+1}(Y) \). The
result now follows from Theorem 4.

It may now be seen that the example of §1 was obtained by con-
structing a space with nonprimitive k-invariant.

In §3 it is shown that given abelian groups \(\pi_n, \pi_m \) and an element
\(k \in H^{m+1}(\pi_n, n; \pi_m) \), there is a space \(Y \) (which may be taken to be a
CW-complex) such that \(\pi_i(Y) = 0 \) for \(i \neq n, m \), \(\pi_n(Y) = \pi_n \), \(\pi_m(Y) = \pi_m \)
and \(k_n^{m+1}(Y) = k \). Any two such CW-complexes are of the same homo-
topy type. This observation and Theorem 5 give a classification of
CW-complexes which admit H-structures and have only two non-
vanishing homotopy groups.

Theorem 5 and Proposition 1 (§1) may be combined to yield a
result about the Whitehead bracket product. Suppose \(\pi_i(Y) = 0 \) for
\(0 \leq i < n \) and \(n < i < 2n - 1 \). Let \(\pi_n = \pi_n(Y) \) and \(\pi_{2n-1} = \pi_{2n-1}(Y) \);
\(\pi_n \otimes \pi_n, \pi_n \oplus \pi_n \) designate respectively the tensor product and the
direct sum of \(\pi_n \) with itself. Three homomorphisms, \(\psi, \tilde{p}_1, \tilde{p}_2 : \pi_n \otimes \pi_n \rightarrow \pi_n \) are defined by
\(\psi(\alpha, \beta) = \alpha + \beta \), \(\tilde{p}_1(\alpha, \beta) = \alpha \), \(\tilde{p}_2(\alpha, \beta) = \beta \) for \(\alpha, \beta \in \pi_n \).

Proposition 7. The cohomology class \((\psi^* - \tilde{p}_1^* - \tilde{p}_2^*)k_n^{2n}(Y) \in H^{2n}(\pi_n \otimes \pi_n, n; \pi_{2n-1}) \) defines a homomorphism \(W : \pi_n \otimes \pi_n \rightarrow \pi_{2n-1} \) such that
\(W(\alpha \otimes \beta) = [\alpha, \beta] \) for \(\alpha, \beta \in \pi_n \).

Proof. Consider the diagram,

\[
\begin{array}{ccc}
\text{Hom} \{ \pi_n \otimes \pi_n; \pi_{2n-1} \} & \xleftarrow{\theta_1} & H^{2n}(\pi_n \oplus \pi_n, n; \pi_{2n-1}) \\
\uparrow & & \downarrow \kappa^* \\
(\eta \otimes \eta)^* & & H^{2n}(X \times X; \pi_{2n-1}) \\
\text{Hom} \{ H_n(Y) \otimes H_n(Y); \pi_{2n-1} \} & \xleftarrow{\theta_2} & H^{2n}(Y \times Y, Y \vee Y; \pi_{2n-1}) \\
\end{array}
\]

The space \(X \) is of type \((\pi_n, n)\), so that the natural chain maps from
the cell complex of \(X \) into the singular complex of \(X \) and thence into
\(K(\pi_n, n) \) induces a chain map, \(\kappa \), from the cell complex of \(X \times X \) into
\(K(\pi_n \oplus \pi_n, n) \). This last induces the isomorphism \(\kappa^* \). The hom-
omorphisms \(\psi, \tilde{p}_1, \tilde{p}_2 \) are algebraic analogues of \(\psi, \tilde{p}_1, \tilde{p}_2 \). In particular,
\(\kappa^*(\psi^* - \tilde{p}_1^* - \tilde{p}_2^*)k_n^{2n}(Y) = (\psi^* - \tilde{p}_1^* - \tilde{p}_2^*)k \). The homomorphisms \(i_1^*, i_2^* \).
are as defined in Theorem 5; \(\eta : \pi_n \to H_n(Y) \) is the Hurewicz isomorphism and \((\eta \otimes \eta)^*\) is the induced isomorphism of the Hom groups. The Kunneth formula yields the homomorphisms \(\theta_1, \theta_2; \theta_2 \) is an isomorphism. Note that \(\theta_1 \circ (\kappa^*)^{-1} \circ (i_1^*)^{-1} \circ (\eta \otimes \eta)^{-1} \) is the identity automorphism of Hom \(\{ \pi_n \otimes \pi_n; \pi_{n-1} \} \) onto itself.

Recall that \(d_n \in H^n(Y; \pi_n) \) is the basic cohomology class of \(Y \). Thus the image of \(d_n \) in Hom \(\{ H^n(Y); \pi_n \} \) is \(\eta^{-1} \) and \(\theta_1(W \circ (\eta^{-1} \otimes \eta^{-1})) = d_n \times d_n = \gamma \). We now have,

\[
W = \theta_1 \circ (\kappa^*)^{-1} \circ i_1^* \circ (i_2^*)^{-1} \circ (\eta \otimes \eta)^{-1}(W)
= \theta_1 \circ (\kappa^*)^{-1} \circ i_1^* \circ (i_2^*)^{-1} (\gamma)
= \theta_1 \circ (\gamma^* - p_1^* - p_2^*)k_n^2(Y).
\]

Proposition 8. Suppose \(Y \) is a CW-complex with only two nonvanishing homotopy groups, \(\pi_n = \pi_n(Y) \) and \(\pi_m = \pi_m(Y) \). Then there is a space of loops \(\Omega \) having the same homotopy groups and \(k \)-invariant as \(Y \) if and only if \(k^{m+1}_n(Y) \) is the suspension of an element \(\kappa_{m+2} \in H^{m+2}(\pi, n + 1; \pi_m) \).

Proof. Let \(S \) be the suspension homomorphism and suppose \(k^{m+1}_n(Y) = Sk^{m+2}_n \). Let \(W \) be a space such that \(\pi_i(W) = 0 \) \((i \neq n+1, m+1)\), \(\pi_{n+1}(W) = \pi_n \), \(\pi_{m+1}(W) = \pi_m \), \(k^{m+2}_{n+1}(W) = k^{m+2}_n \). Then \(\Omega \) is the space of loops on \(W \) is the desired space. The converse is immediate.

J. C. Moore has demonstrated (unpublished) that if \(\alpha \in H^{m+1}(\pi, n; G) \) is primitive then \(\alpha \) is the suspension of an element of \(H^{m+2}(\pi, n+1; G) \). Thus all \(H \)-spaces of the type under discussion are essentially spaces of loops.

3. Let \(X \) be a given 0-connected space, \(x_0 \in X \). We construct a CW-complex, \(K(X) \), whose 0-skeleton is a point \(k_0 \in K(X) \), and a map \(f(X) : K(X) \to X \) such that \(f(X) \) induces isomorphisms \(f(X)^*) : \pi_i(K(X), k_0) \to \pi_i(X, x_0) \) for \(i \geq 0 \). This is done by specifying the \(n \)-skeleta \(K^n \) of \(K(X) \) and maps \(f_n : K^n \to X \).

The 0-skeleton consists of one cell \(E^0 = k_0 \). Suppose \(K^n \) and \(f_n : K^n \to X \) are constructed such that the induced homomorphism

\[
f_n^{\langle i \rangle} : \pi_i(K^n, k_0) \to \pi_i(X, x_0)
\]

is an isomorphism for \(i < n \) and onto for \(i = n \). Let \(A_{n+1} \) be the kernel of \(f_n^{(n)} \) and \(B_{n+1} \subset \pi_{n+1}(X, x_0) \) a set of generators of \(\pi_{n+1}(X, x_0) \). Append cells \(E_{\alpha}^{n+1} (\alpha \in A_{n+1}) \), so that if \(e_{\alpha}^{n+1} \) is the characteristic map of \(E_{\alpha}^{n+1} \) then \((e_{\alpha}^{n+1})^* \in \alpha \), and cells \(E_{\beta}^{n+1} (\beta \in B_{n+1}) \) with \(e_{\beta}^{n+1} (\beta^{n+1}) = k_0 \). The map \(f_n \) can be extended over cells \(E_{\alpha}^{n+1} (\alpha \in A_{n+1}) \) since
$f_n|_{e_\alpha^{n+1}}(i^{n+1})$ is null-homotopic; $f_{n+1}|E^{n+1}_\beta (\beta \subseteq B_{n+1})$ is determined by $f_{n+1} \circ e_\beta^{n+1} \subseteq \beta$. Then

$$f^{(i)}_{n+1}: \pi_i(K^{n+1}, k_0) \to \pi_i(X, x_0)$$

is an isomorphism for $i < n+1$ and onto for $i = n+1$.

The complex $K(X)$ is $\bigcup_{n=0}^\infty K^n$, with the topology: C is closed in $K(X)$ if and only if $C \cap K^n$ is closed in K^n for each n. The map $f(X): K(X) \to X$ is given by $(f(X)|K^n) = f_n$. Note that this is a modification of a construction by J. H. C. Whitehead [7].

Proposition 9. If π_n, π_m are abelian groups ($n < m$) and $k \in \pi^{m+1}(\pi_n, n; \pi_m)$ then there is a CW-complex K such that $\pi_i(K) = 0$ for $i \neq n, m$, $\pi_n(K) = \pi_n$, $\pi_m(K) = \pi_m$, $k^m = k$.

Proof. Let E be the space of paths in the Eilenberg-MacLane space $K(\pi_m, m+1)$ terminating in some point $y_0 \in K(\pi_m, m+1)$ with fibre map $p_1: E \to K(\pi_m, m+1)$ and fibre $K(\pi_m, m)$. If $d \in H^{m+1}(\pi_m, m+1; \pi_m)$ is the basic cohomology class, then there is a map $f: K(\pi_n, n) \to K(\pi_m, m+1)$ such that $f^*(d) = k \in H^{m+1}(\pi_n, n; \pi_m)$. Note that $K(\pi_m, m+1), K(\pi_n, n)$ may be chosen to be CW-complexes and f cellular. The map f induces a space X and maps p_2, F such that the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{F} & E \\
p_2 & \downarrow & \downarrow p_1 \\
K(\pi_n, n) & \to & K(\pi_m, m+1)
\end{array}
$$

is commutative and X is a fibre space over $K(\pi_n, n)$ with fibre map p_2 and fibre $K(\pi_m, m)$. From the homotopy sequence of the fibre map p_2 we see that $\pi_i(X) = 0$ for $i \neq n, m$, $\pi_n(X) = \pi_n$, $\pi_m(X) = \pi_m$.

We know that there is a map, j, of the m-skeleton of $K(\pi_n, n)$ into X such that $p_2 \circ j$ is the identity, and that the obstruction to extending j is k^{m+1}_n. If E^{m+1} is an $(m+1)$-cell of $K(\pi_n, n)$ then its characteristic map e^{m+1} (considered as a null-homotopy of $(e^{m+1}|i^{m+1})$) can be lifted to a map $g: i^{m+1} \times I \to X$ with $(g|i^{m+1} \times 0) = j \circ (e^{m+1}|i^{m+1})$ and $g' = (g|i^{m+1} \times 1): i^{m+1} \to K(\pi_m, m)$. If ∂ is the boundary homomorphism of the homotopy sequence of p_1 and $F' = (F| K(\pi_m, m))$ then

$$\partial^{-1}F'(g') = \{f \circ e^{m+1}\} \subseteq \pi_{m+1}(K(\pi_m, m+1)).$$

But $f^*d(E^{m+1}) = \{f \circ e^{m+1}\}$. Thus there is an isomorphism of $H^{m+1}(\pi_n, n; \pi_m(X))$ onto $H^{m+1}(\pi_n, n; \pi_{m+1}(K(\pi_m, m+1)))$ carrying
k^{m+1}_n into $k = f^*d$. The desired CW-complex is then obtained as in the beginning of this section.

This proof is the obvious generalization of one given by Thom [5].

Bibliography