Note on sums of four and six squares

Author:
L. Carlitz

Journal:
Proc. Amer. Math. Soc. **8** (1957), 120-124

MSC:
Primary 10.1X

DOI:
https://doi.org/10.1090/S0002-9939-1957-0084520-2

MathSciNet review:
0084520

Full-text PDF

References | Similar Articles | Additional Information

**[1]**W. N. Bailey,*A further note on two of Ramanujan’s formulae*, Quart. J. Math., Oxford Ser. (2)**3**(1952), 158–160. MR**0049226**, https://doi.org/10.1093/qmath/3.1.158**[2]**L. Carlitz,*Some partition formulas related to sums of squares*, Nieuw Arch. Wisk. (3)**3**(1955), 129–133. MR**0073621****[3]**J. M. Dobbie,*A simple proof of some partition formulae of Ramanujan’s*, Quart. J. Math. Oxford Ser. (2)**6**(1955), 193–196. MR**0072896**, https://doi.org/10.1093/qmath/6.1.193**[4]**J. W. L. Glaisher,*On the number of representations of a number as a sum of**squares, where**does not exceed eighteen*, Proc. London Math. Soc. vol. 5 (1907) pp. 479-190.**[5]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125****[6]**H. J. S. Smith,*Report on the theory of numbers*, Collected Mathematical Papers, vol. 1, Oxford, 1894.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10.1X

Retrieve articles in all journals with MSC: 10.1X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1957-0084520-2

Article copyright:
© Copyright 1957
American Mathematical Society