The generality of local class field theory (Generalized local class field theory. V.)

Author:
G. Whaples

Journal:
Proc. Amer. Math. Soc. **8** (1957), 137-140

MSC:
Primary 09.3X

DOI:
https://doi.org/10.1090/S0002-9939-1957-0090583-0

MathSciNet review:
0090583

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Emil Artin,*Algebraic numbers and algebraic functions. I*, Institute for Mathematics and Mechanics, New York University, New York, 1951. MR**0045767****[2]**Irving Kaplansky,*Maximal fields with valuations*, Duke Math. J.**9**(1942), 303–321. MR**0006161****[3]**O. E. G. Schilling,*Arithmetic in fields of formal power series in several variables*, Ann. of Math. (2)**38**(1937), no. 3, 551–576. MR**1503353**, https://doi.org/10.2307/1968600**[4]**O. F. G. Schilling,*The Theory of Valuations*, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR**0043776****[5]**G. Whaples,*Generalized local class field theory. I. Reciprocity law*, Duke Math. J.**19**(1952), 505–517. MR**0049236****[6]**G. Whaples,*Existence of generalized local class fields*, Proc. Nat. Acad. Sci. U. S. A.**39**(1953), 1100–1103. MR**0059961**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
09.3X

Retrieve articles in all journals with MSC: 09.3X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1957-0090583-0

Article copyright:
© Copyright 1957
American Mathematical Society