dependent of position) of radius \(n^{1/2}/2 \) contains at least \(N(n) \) lattice points on or within it?

II. Is it possible (for certain \(n \)) to replace the number \(\lceil n/4 \rceil + 1 \) of the theorem by a number \(M(n) \) which is greater than \(\lceil n/4 \rceil + 1 \)?

Brooklyn, N. Y. and

City College of the City of New York

ON THE MULTIPLICATIVE GROUP OF A DIVISION RING

W. R. SCOTT

Let \(K \) be a noncommutative division ring with center \(Z \) and multiplicative group \(K^* \). Hua [2; 3] proved that (i) \(K^*/Z^* \) is a group without center, and (ii) \(K^* \) is not solvable. A generalization (Theorem 1) will be given here which contains as a special case (Theorem 2) the fact that \(K^*/Z^* \) has no Abelian normal subgroups. This latter theorem obviously contains both (i) and (ii). As a further corollary it is shown that if \(M \) and \(N \) are normal subgroups of \(K^* \) not contained in \(Z^* \), then \(M \cap N \) is not contained in \(Z^* \). The final theorem is that an element \(x \) outside \(Z \) contains as many conjugates as there are elements in \(K \). This makes more precise a theorem of Herstein [1], who showed that \(x \) has an infinite number of conjugates.

Square brackets will denote multiplicative commutation. If \(S \) is a set, then \(o(S) \) will mean the number of elements in \(S \). A subgroup \(\mathcal{H} \) of \(K^* \) is subinvariant in \(K^* \) if there is a chain \(\{ N_i \} \) of subgroups such that \(\mathcal{H} \triangleleft N_0 \triangleleft \cdots \triangleleft N_i \triangleleft K^* \), where \(A \triangleleft B \) means that \(A \) is a normal subgroup of \(B \).

Lemma. Let \(K \) be a division ring, \(H \) a nilpotent subinvariant subgroup of \(K^* \), \(y \in H, x \in K^* \), and \([y, x] = \lambda \in Z^* \), \(\lambda \neq 1 \). Then the field \(Z(x) \) is finite.

Proof. The proof of this lemma is essentially part of Hua's proof of (ii), but will be included for the sake of completeness.

Let \(f \) be any rational function over \(Z \) such that \(f(x) \neq 0 \). Then

Presented to the Society, November 23, 1956; received by the editors June 15, 1956.
\[x_1 = [y, f(x)] = yf(x)y^{-1}f(x)^{-1} = f(yx^{-1})f(x)^{-1} = f(\lambda x)f(x)^{-1}; \]
\[x_2 = [y, x_1] = f(\lambda^2 x)f(\lambda x)^{-2}f(x); \]
and, by induction, if \(x_n = [y, x_{n-1}] \), then
\[x_n = \prod_{i=0}^{n} f(\lambda^i x)^{-n-i}(?) \]

Now, by the subinvariance of \(H \), \(x_1 \in N_1 \), \(x_2 \in N_2 \), \ldots, \(x_r \in H \), and since \(H \) is nilpotent, \(x_n = 1 \) for some \(n \). Letting \(f(x) = 1 + x \), we have

\[\prod (1 + \lambda^i x)^{(?)} - \prod (1 + \lambda^i x)^{(?)} = 0, \]

where the first product is taken over those \(i \) such that \(n - i \) is even and the second over those \(i \) such that \(n - i \) is odd, \(i = 0, \ldots, n \). In the left member, the constant term is equal to 0, while the coefficient of \(x \) is

\[\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \lambda^i = (\lambda - 1)^n \neq 0. \]

Thus \(x \) is algebraic (of degree at most \(2^{n-1} - 1 \)) over \(Z \). If \(c \in Z^* \), then \([y, cx] = \lambda \), and \(cx \) is also a root of (1). Therefore \(Z \) is finite, and \(Z(x) \) is finite as asserted.

Theorem 1. Let \(K \) be a division ring, \(G \) and \(H \) subinvariant subgroups of \(K^* \), \(x \in G \), \(y \in H \), and \([y, x] = \lambda \in Z^* \lambda \neq 1 \). Then one of \(G \) and \(H \) is not nilpotent.

Proof. Deny the theorem. By the lemma \(Z \) is finite and both \(x \) and \(y \) are algebraic over \(Z \). Since \(yx = \lambda xy \), the set \(S \) of elements of the form \(\sum z_{ij} x^i y^j \), \(z_{ij} \in Z \), is a finite noncommutative division ring.

Theorem 2. If \(K \) is a noncommutative division ring, then \(K^*/Z^* \) has no normal Abelian subgroups.

Proof. If \(N/Z^* \) is a normal Abelian subgroup, then \(N \) is a nilpotent normal subgroup of \(K^* \). The division ring generated by \(N \) is invariant, hence by the Cartan-Brauer-Hua theorem is \(K \) itself. Therefore \(N \) is non-Abelian, and there are elements \(x, y \in N \) such that \([y, x] = \lambda \in Z^* \lambda \neq 1 \). This contradicts Theorem 1.

Remark. The proof of Theorem 2 depends on Wedderburn’s theorem that a finite division ring is a field. This can be avoided by the following considerations. Using the notation of the preceding proofs, \(x_1 = [y, 1 + x] \in N \), \(x_2 = [y, x_1] \in Z \), \(x_3 = [y, x_2] = 1 \), and \(n \leq 3 \). However, the coefficient of \(x^4 \) in the left member of (1) vanishes, so that \(x \) and \(y \) are of degree 2 over \(Z \), and \(o(Z) = 3 \) since it contains the distinct
elements 0, 1, and λ. Then $o(S) \leq 3^4$, and since S must have room for a center and a subfield not in the center, $o(S) = 3^4$ and Z is the center of S. Thus S^* is a group of order 80 and contains an element u of order 5. The centralizer $C(u)$ of u in S is a division ring, hence of order 3, 9, or 81, therefore by Lagrange's theorem of order 81. But then $u \in Z$, $o(Z) \geq 5$, and the contradiction proves the theorem.

Theorem 3. Let K be a division ring and M and N be normal subgroups of K^* not contained in Z^*. Then $M \cap N$ is not contained in Z^*.

Proof. Deny the theorem. Then $[M, N] \subset Z^*$. Let $y \in N$, $y \in Z^*$. Since the centralizer $C(M)$ of M is an invariant division ring not K, by the Cartan-Brauer-Hua theorem, $C(M) = Z$. Hence $y \in C(M)$, and there is an x in M such that $[y, x] = \lambda \neq 1$, $\lambda \in Z^*$. The map $\sigma = [x, \cdot]$ is a homomorphism of N into Z^* with kernel $L \subseteq [N, N]$. Since $y \in L$, $y \in [N, N]$, and since y was arbitrary, $[N, N] \subset Z^*$. Therefore N is nilpotent. Similarly M is nilpotent and Theorem 1 is contradicted.

Lemma. Let K be an infinite division ring (perhaps commutative), D a proper subdivision ring. Then $[K^* : D^*] = o(K)$.

Proof. Let $x \in K^*$, $x \in D^*$. Then the cosets $D^*(x + a)$, $a \in D$, are distinct. Hence $[K^* : D^*] \geq o(D)$. If $o(D) = o(K)$ we are done; if not, then $o(K) = o(K^*) = o(D^*) [K^* : D^*]$, hence again $[K^* : D^*] = o(K)$.

Theorem 4 (See [1]). If K is a division ring and x is a noncentral element, then x has $o(K)$ conjugates.

Proof. The centralizer C of x is a proper subdivision ring of K. Then the number of conjugates of x equals $[K^* : C^*]$ which is $o(K)$ by the lemma.

Bibliography

University of Kansas and
Institute for Advanced Study