ON THE SOLUTION OF $f(f(z)) = e^z - 1$ AND ITS DOMAIN OF REGULARITY

ROBERT OSSERMAN

The problem of examining the complex solutions $f(z)$ of the equation

\[(1) \quad f(f(z)) = e^z - 1\]

was suggested to the author by S. Chowla who, together with Kempner, Rivlin, and Thron, proved that $f(z)$ cannot be an entire function. This result is contained as a special case in two recent papers [1; 3] using the theory of entire functions. The purpose of the present note is to show how the use of elementary geometric methods leads quite easily to a slightly stronger theorem which gives some information on a maximum domain of regularity for $f(z)$. This method may also be applied to the equation

\[(2) \quad f(f(z)) = e^z\]

which was treated in detail by Kneser [2] who proved the existence of a solution analytic on the whole real axis.

Theorem. Let $z = x + iy$ and let Ω denote an infinite strip $|y| < b$ for some constant $b > \pi$. Let $f(z)$ be a function defined in some domain D such that $\Omega \subset D$ and $f(\Omega) \subset D$. If $f(z)$ satisfies (1) throughout D then it cannot be analytic in Ω.

Proof. Denote by R the image region under $w = f(z)$ of the strip $S: |y| < \pi$. Then if $\xi = f(\omega) = f(f(z)) = e^z - 1$, the image under $f(\omega)$ of R must be the region T consisting of the ξ-plane slit along the negative real axis from -1 to $-\infty$. Since the composed map $\xi = f(f(z))$ is a one-one map of S onto T, the maps f of S onto R and of R onto T must also be one-one. Furthermore, since the given correspondences between S and R and between S and T are conformal, so is the correspondence between R and T.

We note next that $f(0) = 0$. Namely, if $f(0) = a$, then $f(a) = f(f(0)) = 0$, so that $a = f(0) = f(f(a)) = e^a - 1$. But evaluating the derivative of equation (1) at the points 0 and a respectively, we find $f'(a)f'(0) = 1$ and $f'(0)f'(a) = e^a = a + 1$, whence $a = 0$.

Presented to the Society, August 24, 1956 under the title On the solution of a functional equation; received by the editors March 15, 1956 and, in revised form, June 27, 1956.

262
We may thus write the power expansion for \(f(z) \) at the origin in the form \(f(z) = a_1 z + a_2 z^2 + \cdots \), and inserting this in equation (1) shows that \(a_1 = 1 \) and all the \(a_n \) are real. In other words, \(f'(0) = 1 \) and \(f(z) \) is real on the real axis. But the image of the negative x-axis cannot be the whole negative axis in the \(w \)-plane, since the composed map \(f(f(z)) \) must take the negative x-axis onto the interval \((-1, 0)\). Hence \(w = f(z) \) must map the negative x-axis onto an interval \((-c, 0)\) such that \(f: (-c, 0) \to (-1, 0) \). This implies that \(c > 1 \).

We can now show explicitly that the function \(f(z) \) must have a singularity at the point \(z_0 = \log (c - 1) + i\pi \) of the region \(\Omega \). To see this, denote by \(R' \) a copy of the region \(R \) placed in the \(\zeta \)-plane. Then we can find a sequence of points \(\zeta_n \) in the upper half \(\zeta \)-plane such that \(\zeta_n \in R' \cap T \) for all \(n \), and \(\zeta_n \to -c \). Then the corresponding points \(z_n \) of \(S \) such that \(\zeta_n = f(f(z_n)) \) will approach \(z_0 \). On the other hand, their images \(w_n = f(z_n) \) must approach \(-\infty\). To see this we need only note that \(w_n = f^{-1}(\zeta_n) \), so that if we consider the points \(z_n' = w_n \) of the \(z \)-plane and the points \(w_n' = \zeta_n \) of the \(w \)-plane, then \(z_n' = f^{-1}(w_n') \), and \(w_n' \to -c \) implies \(z_n' \to -\infty \).

Bibliography

