MULTIPLIERS ON COMPLEX HOMOGENEOUS SPACES

R. C. GUNNING

1. Let G be a real Lie group, represented as a transitive group of analytic automorphisms of a simply-connected complex analytic manifold D; if $g \in G$ and $z \in D$, the action of the transformation representing g on the point z will be denoted by gz. A multiplier for the group G, with respect to its representation as a transformation group on D, is a C^∞ complex-valued function $\mu(g; z)$ on $G \times D$ which is holomorphic in z and which satisfies $\mu(g_1 g_2; z) = \mu(g_1; g_2 z) \mu(g_2; z)$ for every $g_1, g_2 \in G$; to exclude the obvious trivial case, we further assume that $\mu(g; z) \neq 0$. Such functions are sometimes considered in examining the group G and its representations, but also arise as the continuous analogs of some structures of interest in the study of automorphic functions; our purpose here is to determine the possible multipliers which may arise in connection with the second of the above points of view. We shall always assume here that G is connected. Notice that the set of all multipliers for G forms an abelian group $\mathfrak{M}(G; D)$ under multiplication.

The universal covering group G^* of G also acts as a transformation group on D, the action of the transformation representing $g^* \in G^*$ on the point $z \in D$ being defined by $g^* z = gz$ whenever g^* covers g; we shall consider firstly the group $\mathfrak{M}(G^*; D)$ of multipliers for G^*. Let H^* be the isotropy subgroup of G^* at some point z_0, which point is to be held fixed subsequently, and let K^* be the subgroup of G^* consisting of all elements represented by the trivial transformation which leaves D pointwise fixed. For our purposes, in particular for Siegel’s modular groups, there is no loss of generality in assuming:

(i) that there are local C^∞ mappings $z \rightarrow g^*_z$ of D into G^* such that $g^*_z z_0 = z$; (ii) that K^* is the center of G^*; (iii) that $K^* \cap [G^*, G^*] = e^*$, that is, the intersection of the center and the commutator subgroup of G^* is the trivial subgroup consisting of the identity e^* alone; and (iv) that elements of finite order are everywhere dense in the group H^*/K^*.

Whenever $f(z)$ is holomorphic and nowhere vanishing on $D,$
\[\mu_0(g^*; z) = f(g^*z)f(z)^{-1} \] is a multiplier; these are called the trivial multipliers, and form a subgroup \(\mathfrak{M}(G^*; D) \) of \(\mathfrak{M}(G^*; D) \) which is canonically isomorphic to the group of holomorphic, nowhere-vanishing functions on \(D \). Let \(\mathcal{E}(G^*; D) \) be the additive group of \(G^* \)-invariant differential forms of type \((0, 1)\) on the manifold \(D \) which are of the form \(\bar{\partial}g(z, \bar{z}) \) for some \(C^\infty \) complex valued function \(g(z, \bar{z}) \) on \(D \); in the cases which arise from automorphic functions, when \(D \) is a Stein manifold, these differential forms are just the \(\bar{\partial} \)-closed \(G^* \)-invariant forms of type \((0, 1)\). Finally let \(\text{Hom} \ (K^*; C) \) be the group of \(C^\infty \) homomorphisms of \(K^* \) into the additive group of complex numbers.

Theorem. The group \(\mathfrak{M}(G^*; D) \) is canonically isomorphic to a direct sum as follows:

\[\mathfrak{M}(G^*; D) \cong \mathcal{E}(G^*; D) \oplus \mathfrak{Z}(G^*; D) \oplus \text{Hom} \ (K^*; C). \]

Proof. Since \(G^* \times D \) is simply-connected, \(\sigma(g^*; z) = \log \mu(g^*; z) \) is a well-defined single-valued function, that branch of the logarithm being selected for which \(\sigma(e^*; z) = 0 \) for the identity \(e^* \in G^* \); moreover \(\sigma(g_1^*g_2^*; z) = \sigma(g_1^*; g_2^*z) + \sigma(g_2^*; z) \) for every \(g_1^*, g_2^* \in G^* \). In particular, whenever \(k^* \in K^* \) and \(g^* \in G^* \), it follows from assumption (ii) that \(g^* = g_1^*g_2^* = k^* \), and hence that \(\sigma(k^*; z) = \sigma(g^* - k^*g^*; z) = \sigma(g^* - 1; k^*g^*z) + \sigma(k^*; g^*z) + \sigma(g^*; z) = \sigma(k^*; g^*z) \); therefore \(\sigma(k^*; z) = \sigma(k^*) \) is a constant. The mapping \(k^* \mapsto \sigma(k^*) \) is an element of \(\text{Hom} \ (K^*; C) \), and the mapping \(\mu(g^*; z) \mapsto \sigma \) is a homomorphism of \(\mathfrak{M}(G^*; D) \) into \(\text{Hom} \ (K^*; C) \). Now restricting ourselves to the kernel of the above homomorphism in \(\mathfrak{M}(G^*; D) \), we have \(\sigma(k^*; z) = 0 \) for every \(k^* \in K^* \). Whenever \(h^* \in H^* \) corresponds to an element of finite order in \(H^*/K^* \), say \(h^* \in K^* \), then \(0 = \sigma(h^*; z_0) = n \sigma(h^*; z_0) \); but since such elements are everywhere dense in \(H^* \) by assumption (iv), it follows that \(\sigma(h^*; z_0) = 0 \) for every \(h^* \in H^* \). Thus for every \(g^* \in G^* \), \(g_0^*z_0 = g^*z = g_0^*g^*z_0 \), so that \(g_0^*g_0^*g^* \in H^* \); consequently \(0 = \sigma(g_0^*g_0^*g^*; z_0) = -\sigma(g_0^*; z_0) + \sigma(g^*g^*; z_0) \). Now \(f(z) = \sigma(g^*; z_0) \) is independent of the choice of local sections \(g_0^* \), is clearly a \(C^\infty \) function on \(D \) by assumption (i), and for any \(g^* \in G^* \), \(f(g^*z) = \sigma(g^*g^*; z_0) = \sigma(g^*g^*; z_0) = \sigma(g^*; z) + f(z) \). Obviously any other function satisfying this functional equation differs from \(f(z) \) at most by an additive constant. To each \(\sigma(g^*; z) \) associate the differential form \(\bar{\partial}f(z) \); this defines a homomorphism of the set of multipliers with \(\sigma = 0 \) into the group \(\mathcal{E}(G^*; D) \), and the kernel is clearly precisely the group \(\mathfrak{M}(G^*; D) \).

To complete the proof, we need merely show that the above homomorphisms are onto. For any differential form \(\bar{\partial}f(z) \in \mathcal{E}(G^*; D) \),
\(\mu(g; z) = \exp(f(gz) - f(z)) \) is a multiplier having \(\theta = 0 \) and mapping onto the form \(\tilde{\theta}f(z) \) by the previous mapping. Further, any element \(\tilde{\theta} \in \text{Hom}(K^*; C) \) can be extended to an element \(\tilde{\theta}_1 \in \text{Hom}(G^*; C) \); for if we map \(G^* \) homomorphically onto the abelianized group \(G^*/[G^*, G^*] \), this will be an isomorphism on \(K^* \) by assumption (iii), and since a homomorphism on a subgroup of an abelian group can be extended to the full group, \(\tilde{\theta} \) clearly admits the desired extension, the exponential of which is a multiplier mapping onto the element \(\tilde{\theta} \). This therefore concludes the proof.

Any homomorphic image \(G_1 \) of \(G^* \) for which the kernel \(K_1^* \) of the homomorphism \(G^* \rightarrow G_1 \) is contained in \(K^* \) likewise acts as a transformation group on \(D \); the multipliers \(\mathfrak{m}(G_1; D) \) are determined by the subgroup of \(\mathfrak{m}(G^*; D) \) consisting of those multipliers \(\mu(g^*; z) \) for which \(m(W; z) = 1 \) whenever \(k^* \in K^* \).

2. As an example, consider the symplectic group acting on the generalized unit disc of degree \(p \), as introduced by Siegel. The assumptions as listed previously are fulfilled in this case. Moreover the group \(\mathfrak{g}(G^*; D) \) is a one-dimensional vector space over the complex numbers. To see this, recall that there is but one independent, closed \(G \)-invariant differential form of type \((1, 1)\) on \(D \) in this case, namely the form \(\Omega \) determined by the metric. If \(\theta_1, \ldots, \theta_a \) form a basis for \(\mathfrak{g}(G^*; D) \), the elements \(\partial \theta_1, \ldots, \partial \theta_a \) must be dependent; hence by a suitable choice of the base, we may assume that \(\partial \theta_a = \cdots = \partial \theta_a = 0 \). But then \(\theta_j / \partial \theta_j \) will be a closed and invariant form for \(j \geq 2 \), and must be zero since \(\Omega \) does not admit such a decomposition; hence \(\theta_j = 0 \) for \(j \geq 2 \), and \(a = 1 \). Therefore in this case, the nonobvious multipliers in \(\mathfrak{m}(G^*; D) \) are powers of the Jacobian determinants of the transformations representing elements of \(G^* \). The same is of course true whenever there is but one closed invariant form of type \((1, 1)\) on \(D \).

5 This would imply \(\Omega \wedge \Omega = 0 \), which is impossible for a Kaehler metric.