with mild restrictions on \(\phi \) ensures that \(u/v \) satisfies the maximum principle; and this is the property which underlies the present analysis.

Bibliography

University of California, Los Angeles

A NOTE ON LINEAR ORDINARY DIFFERENTIAL EQUATIONS

STEPHEN P. DILIBERTO*

Let

\[
\frac{dx}{dt} = A(t)x,
\]

where \(x \) is an \(n \)-column vector

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\]

and \(A = (a_{ij}(t)) \) where \(a_{ij}(t) \) are continuous real valued functions of time \((-\infty < t < +\infty)\). Let \(y^1(t), \cdots, y^n(t) \) be any \(n \)-linearly independent solutions of (1) defined for all \(t \). Let \(B^1(t), \cdots, B^n(t) \) be the \(n \) normal-orthogonal vectors obtained from the set \(\{y^i\} \) by the Gram-Schmidt orthogonalization process. Let \(B(t) \) be the orthogonal matrix whose \(j \)th column is \(B^j(t) \), and introduce a new variable \(u \) (an \(n \)-column vector) defined by

\[(2) \quad x = B(t)u.\]

\(u \) satisfies the linear differential equation

Received by the editors August 23, 1956.

The author is indebted to the Office of Scientific Research for a research grant 1954–1955, during which time this work was undertaken.
\[
\frac{du}{dt} = C(t)u
\]

where \(C \) is related to \(A \) and \(B \) by
\[
C(t) = \begin{pmatrix} B^{-1}(t) A(t) B(t) \end{pmatrix} - B^{-1}(t) \frac{d}{dt} B(t).
\]

We have shown\(^2\) that
\[
c_{ij}(t) = 0 \quad \text{if } i > j.
\]

We propose to show that the \(c_{ij} \) satisfies certain simple formulas for \(i \leq j \), and these will imply that the \(c_{ij} \) are bounded if the \(a_{ij} \) are bounded. Our first proof\(^2\) of this fact was unsatisfactory.

We reemploy the convention that if \(B \) is an \(n \times n \) matrix, \(B_i \) will denote the \(i \)th row of \(B \) and also the row vector determined by the \(i \)th row of \(B \); \(B^i \) will denote the \(j \)th column of \(B \) and also the column vector determined by the \(j \)th column of \(B \). If \(E, F, \) and \(G \) are three matrices \((n \times n)\) and \(E = FG \), then \(E_i = F_i G \) and \(E^i = F_i G^i \), where in the latter two formulas one has the appropriate vector-matrix and matrix-vector multiplication. \(E^i_i \) will denote the \((i - j)\)th element of \(E \), and if \(E = FG \), then \(E^i_i = F^i_i G^i_i \) where the right side is scalar multiplication (of a row vector times a column vector). If \(E = (e_{ij}) \), then \(E^i_i = e_{ij} \).

From (4) one finds
\[
\frac{dB}{dt} = B_i^{-1} A B^i - B_i^{-1} \left(\frac{dB}{dt} \right)^i,
\]

or
\[
\frac{c_{ij}}{dt} = B^i_i A B^i - B^i_i \left(\frac{dB}{dt} \right)^i,
\]

this last following from the fact the \(B \) is orthogonal, i.e. \(B' = B^{-1} \) and therefore \((B^i)_i = B_i^{-1} \), but \((B^i')_i = (B^i)' \) or \(B'i \) (in our notation). From \(\delta_{ij} = B_i^{-1} B^i = B''^i B^i \), one finds on differentiating that
\[
\frac{d}{dt} \left(\frac{d}{dt} B^i \right) B^i = -B^i \left(\frac{d}{dt} B^i \right) = -\left(\frac{dB^i}{dt} \right) B^i.
\]

For $i=j$ (7) implies that
\[
\left(\frac{d}{dt} B'^i\right) B^i = 0;
\]
therefore (6) for $i=j$ becomes
\[
(8) \quad c_{ii} = B'^i A B^i.
\]
Formula (5) implies for $r>s$, $c_{rs}=0$; hence using (6) that
\[
B'^r \left(\frac{dB^r}{dt}\right) = B'^r A B^r, \quad r > s
\]
and this combined with (7) implies
\[
(9) \quad B'^s \left(\frac{dB^s}{dt}\right) = -B'^r A B^r \quad (r > s).
\]
For $s=i$ and $r=j$ and $i<j$ (9) substituted into (6) yields
\[
(10) \quad c_{ij} = B'^i A B^i + B'^i A B^i.
\]
Observing, when $A'=$ transpose of A, that $B'^i A B^i = B'^i A' B^i$ one may rewrite (10) as
\[
(11) \quad c_{ij} = B'^i (A + A') B^i.
\]

Remarks. The fact that one has “explicit” formulas for c_{ij} (i.e. (5), (8), and (10)) does not appear to simplify our treatment (loc. cit.) of the theory of “generalized characteristic exponents.” Formulas (8) and (10) can of course be used to establish a number of “stability” theorems; and all such results, including the formulas themselves, carry over directly to systems of linear ordinary differential equations in Hilbert space. It is to be noted that our expression for C does not depend on the derivatives of the $b_{ij}(t)$.

Institute for Advanced Study and
University of California, Berkeley