We consider certain properties of topological rings with identity which can be deduced from connectedness.

The following two statements follow immediately from Kaplansky [2, Theorems 1 and 2].

1. A connected compact ring is a zero ring.

2. A connected locally compact ring with identity is a finite dimensional algebra over the reals. In this note we drop the assumption of local compactness. Most of the results are consequences of the following simple lemma.

Let M be a topological module over a topological ring A, i.e. M is a topological abelian group, a module over A, and $(a, m) \rightarrow am$ is jointly continuous.

Lemma 1. If A is connected and M_0 is a submodule of M then AM_0 is in the component of 0 in M_0.

Proof. Let $m_0 \in M_0$, then $a \rightarrow am_0$ is a continuous mapping of A onto a connected subset of M_0. Since for $a = 0$ in A, $am_0 = 0$, this subset contains 0.

The following statements follow immediately from Lemma 1:

1. A unital module over a connected ring with identity has only connected submodules.

2. A connected ring with identity has only connected left (right) ideals.

3. The only discrete left (right) ideal in a connected ring with identity is the zero ideal.

We use the definition of covering space and simple connectedness given by Chevalley [1], and we prove the following theorem which is in direct analogy to Proposition 5, p. 53 of [1].

Theorem 1. If a ring A admits a simply connected covering space (S, f) then S can be made into a ring so that f is a ring homomorphism; furthermore if A has an identity so does S.

Proof. Assume that (S, f) covers A and that S is simply connected. Then the product $T = S \times S \times S \times S$ is also simply connected. Define the continuous mapping $\Omega: T \rightarrow A$ by $\Omega(a, b, c, d) = f(a)f(b) + f(c) - f(d)$. Let 0 be an element of S contained in $f^{-1}(0)$, and let β be a fixed element of S not contained in $f^{-1}(0)$. The simple connectedness...
ness of T then implies there is a unique "lifting" of Ω (a continuous mapping of $\Omega': T \to S$ such that $f \circ \Omega' = \Omega$) such that $\Omega'(\beta, 0, 0, 0) = 0$. We define $-a$ in S to be $\Omega'(\beta, 0, 0, a)$ and $a+b$ to be $\Omega'(\beta, 0, a, -b)$. These are continuous operations, S becomes an abelian topological group under them, and f is a group homomorphism of S onto the additive group of A (see Proposition 5, p. 53 of [1]).

We now define a (continuous) multiplication in S by $ab = \Omega'(a, b, 0, 0)$. Note that $f(ab) = f(a)f(b)$. We show first that $a0 = 0a = 0$ for all a in S. The two continuous mappings $\theta: a \to 0$ and $\theta': a \to a0$ have the property that $f \circ \theta = f \circ \theta'$ and $\theta(\beta) = \theta'(\beta)$. Thus since S is connected and f is a covering map $\theta = \theta'$, $a0 = 0$. Also the two mappings θ and θ'': $a \to a0$ obey $f \circ \theta = f \circ \theta''$ and agree on $a = 0$, thus $\theta = \theta''$ and $0a = 0$. We next show associativity.

The two continuous mappings $\Sigma: (a, b, c) \to a(bc)$ and $\Sigma'': (a, b, c) \to (ab)c$ from the connected space $S \times S \times S$ to S have the property that $f \circ \Sigma = f \circ \Sigma''$ and Σ and Σ'' agree on $(0, 0, 0)$. Thus $\Sigma = \Sigma''$ and $a(bc) = (ab)c$. To show left distributivity use the above argument applied to the two mappings $(a, b, c) \to a(b+c)$ and $(a, b, c) \to ab+ac$ and similarly for right distributivity.

If A has an identity e then the element 0 may be chosen in $f^{-1}(e)$ and is an identity for S. This is because the two mappings $b \to 0b$ and $b \to b$ have the same composition with f and agree on $b = 0$. A similar argument shows $b0 = b$. This completes the proof of the theorem.

As an immediate corollary we obtain

Theorem 2. A ring with identity which admits a simply connected covering space is already simply connected.

Proof. By Theorem 1, the ring admits a covering ring with identity and the covering map becomes a ring homomorphism. But the kernel of this is a discrete ideal and, by the property 3 listed above, must be zero. Thus the covering map is a homeomorphism.

References

The Ohio State University