R. H. Bing on p. 341 of [1] raises the following question:

Question. Does there exist a positive integer \(n \) such that the following result holds for each continuous curve \(M \), each positive number \(\epsilon \), and each pair of mutually exclusive closed subsets \(H \) and \(K \) of \(M \)? If \(R \) is a finite subset of \(M \) such that each point of \(R \) belongs to an arc in \(M \) of diameter less than \(\epsilon \) that intersects \(H + K \), there are two collections \(A_H \) and \(A_K \) of arcs satisfying the following conditions:

(a) Each element of \(A_H \) intersects \(H \) but not \(K \) and each element of \(A_K \) intersects \(K \) but not \(H \) nor any element of \(A_H \). (b) Each element of \(R \) belongs to an element of \(A_H + A_K \). (c) Each element of \(A_H + A_K \) is of diameter less than \(n \epsilon \).

If for some integer \(n \) the answer is yes, then E. E. Moise's method of partitioning would be validated (see [2] and [3]). Also, a simple technique yielding an affirmative answer would allow a more direct proof of partitioning by Bing's method and could probably be used to advantage on other problems.

Bing [1] gives an example to show that the answer is no for \(n = 1 \). The present paper gives an example to show that the answer is no for \(n = 2 \).

In the example given below, a metric will be defined such that with this metric the given point set has the desired metric property. The example was originally considered with a homeomorphism to Euclidean three space, where the image had the desired property. The metric given here follows a suggestion of R. H. Bing.

Example. The example is described at the top of the following page.

The metric. Consider the example as a finite graph \(G \), the sum of a finite number of segments, \(s_1, s_2, \ldots, s_n \), such that if \(s_i \) and \(s_j \) have a point in common, \(s_i \cap s_j \) is an end point of both \(s_i \) and \(s_j \), and such that each element \(a_i \) is the sum of elements of \(s_1, s_2, s_3, \ldots, s_n \). Let each element \(s_i \) be of length slightly less than \(\epsilon \), say \(\epsilon - \delta \). Now if \(v_i, v_j \) are vertices of segments of \(G \), set \(d(v_i, v_j) = 0 \) if \(i = j \), \(d(v_i, v_j) = N(\epsilon - \delta) \) if \(i \neq j \), where \(N \) is the minimum number of \(a_i \)'s whose sum is a continuum containing \(v_i \) and \(v_j \). If \(x, y \) belongs to the same \(a_i \), let \(d(x, y) = \min \) (distance \(x \) to \(y \) along the line segment, \(\epsilon - \delta \)).

Presented to the Society, December 27, 1955; received by the editors April 28, 1956 and, in revised form, May 26, 1956 and September 22, 1956.
Concerning partitioning

Example

\[R = \sum_{i=1}^{21} p_i \quad H = h_i (i = 1, 2, 3, 7, 8, 9, 16, 17, 18) \]
\[K = k_i (i = 4, 5, 6, 10, 11, 12, 13, 14, 15, 19, 20, 21) \]
\[a_i = \text{the arc } p_i \text{ to } h_i \text{ (or } k_i) \], \(i = 1 \) to 21.

Then for arbitrary \(x, y \) in \(G \) set

\[d(x, y) = \min (d(x, p) + d(p, q) + d(q, y)) \]

where minimum is taken over all \(p, q \) where \(d(p, q) \) has already been defined.

Indication of a proof. Assume that \(n \) is two. Consider arcs \(a_1, a_2, a_3 \) (from \(p_1 \) to \(h_1 \), \(p_2 \) to \(h_2 \), and \(p_3 \) to \(h_3 \)). Note that since \(n = 2 \), \(p_3 \) must belong to an arc in \(A_H \) that is a subset of \(a_3 \) or \(a_4 + a_1 \). Then \(p_1 \) belongs to an arc of \(A_H \) as does \(p_2 \). This means that either:

- **Case I.** \(a_1 \) belongs to \(A_{H^*} \); or,
- **Case II.** \(a_2 \) belongs to \(A_{H^*} \).

Suppose Case I. Then \(a_4 \) must belong to \(A_{K^*} \), \(a_7 \) to \(A_{H^*} \), and \(a_{10} \) to \(A_{K^*} \), but \(a_{10} \) intersects \(a_1 \), which gives a contradiction. A similar line of reasoning leads to a contradiction for Case II.

References