ON CLOSED CONVEX SURFACES

V. G. GROVE

1. Introduction. The purpose of this paper is to prove the following theorem. Let S and \overline{S} be two closed orientable convex surfaces of class C''' imbedded in an euclidian space E^3 of three dimensions, and possessing no parabolic points. Let h be a differentiable homeomorphism of S into \overline{S} such that (a) $II = \overline{II}$, II and \overline{II} being the second fundamental forms of S and \overline{S} respectively, (b) such that the Gaussian curvatures K and \overline{K} of S and \overline{S} are equal at corresponding points X and \overline{X}, and (c) such that the orientations of S and \overline{S} are preserved. Then h is a rigid motion.

Incidental to the proof of the theorem, we present a simple proof of Liebmann's theorem on the rigidity of the sphere. In seeking an integral formula furnishing a proof of the theorem an integral formula was found which gave a simple proof of the fact that such a surface S, described in the theorem and for which the ratio of the mean to the Gaussian curvature is a constant, is a sphere. Such a surface is of course a "special" Weingarten surface. Chern has proved [3] that all convex special W-surfaces are spheres. Hence our statement is but a special case of Chern's theorem.

Since S and \overline{S} are orientable, we may assume that their second fundamental forms are positive definite.

2. Exterior forms on S. Let $0 - I_1, I_2, I_3$ be a fixed orthogonal frame in E^3. Let (x^1, x^2, x^3) be the coordinates of a point X in E^3 with respect to this orthogonal frame. The vector equation of the surface S has the form

$$X = X(u^1, u^2),$$

wherein the components (x^1, x^2, x^3) of the position vector X are of class C''' in a simply connected domain D of a parameter plane. Moreover the vector $X_1 \times X_2$ wherein $X_a = (\partial X/\partial u^a)$, is not a null vector for any point of D.

We shall use the usual summation convention: repeated indices indicating summation over the range of the indices. We shall let the roman letters have the range 1, 2, 3 and the greek letters the range 1, 2.
Let E_3 be the unit normal vector of S. The first and second fundamental forms of S are given by

\begin{equation}
I = (dX)^2 = X_\rho \cdot X_\sigma du^\rho du^\sigma = g_{\rho\sigma} du^\rho du^\sigma, \\
II = - dE_3 \cdot dX = d_\rho du^\rho du^\sigma.
\end{equation}

Let $X - E_1, E_2, E_3$ be a frame, to be called a conjugate frame, such that $(E_1, E_2, E_3) > 0$, and such that if

\begin{equation}
E_1 = U^\rho X_\rho, \quad E_2 = V^\rho X_\rho,
\end{equation}

then

\begin{equation}
d_\rho U^\sigma U^\sigma = 1, \quad d_\rho U^\rho V^\sigma = 0, \quad d_\rho V^\rho V^\sigma = 1,
\end{equation}

wherein U^σ, V^σ are functions of $u^1 u^2$ Class C''. Conditions (2.4) imply that the tangent vectors E_1, E_2 form an orthonormal frame with respect to the metric II. They are conjugate vectors in the sense of Dupin.

Let

\begin{equation}
E_i = a, \quad E_1 \cdot E_2 = b, \quad E_2 = c.
\end{equation}

Let ω^1, ω^2 be two forms on S defined by

\begin{equation}
\omega^1 = U_\rho du^\rho, \quad \omega^2 = V_\rho du^\rho, \quad U_\alpha = d_\alpha U^\rho, \quad V_\alpha = d_\alpha V^\rho.
\end{equation}

From (2.3) and (2.6) we find that

\begin{equation}
X_\alpha = U_\alpha E_1 + V_\alpha E_2, \quad d\omega^\alpha = U^\alpha \omega^1 + V^\alpha \omega^2.
\end{equation}

Hence

\begin{equation}
dX = X_\rho du^\rho = (U_\rho E_1 + V_\rho E_2)(U^\rho \omega^1 + V^\rho \omega^2) = \omega^i E_i, \quad \omega^3 = 0.
\end{equation}

We also write

\begin{equation}
dE_i = \omega^j E_j, \quad \omega^3 = 0.
\end{equation}

Taking exterior differentials of (2.8) and (2.9), and using (2.8) and (2.9) we find that

\begin{equation}
d\omega^i = \omega^j \wedge \omega^i, \quad d\omega_j = \omega^k \wedge \omega^i.
\end{equation}

Equations (2.10) are of course the conditions of compatibility of (2.8) and (2.9).

Using (2.4) and (2.5) we find that the first and second fundamental forms of S are

\begin{equation}
I = a(\omega^1)^2 + 2b \omega^1 \omega^2 + c(\omega^2)^2, \quad II = (\omega^1)^2 + (\omega^2)^2.
\end{equation}
It follows from (2.11) that the mean H of the principal normal curvatures and the Gaussian curvature K of S are given by

$$2H = (a + c)K, \quad (ac - b^2)K = 1. \tag{2.12}$$

Since $\omega^3 = 0$, we find from the first of (2.10) that

$$\omega^1 \land \omega^3 + \omega^2 \land \omega^3 = 0.$$

Hence ω^3 and ω^3 must have the form

$$\omega^1 = p\omega^1 + q\omega^2, \quad \omega^2 = q\omega^1 + r\omega^2. \tag{2.13}$$

Since $E_1 \cdot E_2 = 0$, $E_2 \cdot E_3 = 0$, it follows from (2.9) that

$$\omega^i E_i \cdot E_i + \omega^i E_i = 0, \quad \omega^i E_i \cdot E_i + \omega^i E_i = 0.$$

Hence

$$\omega^3 = - (a\omega^1 + b\omega^2), \quad \omega^3 = - (b\omega^1 + c\omega^2). \tag{2.14}$$

From (2.2) the second fundamental form of S is given by

$$\Pi = - dE_3 \cdot dX = - [(a\omega^1 + b\omega^2)\omega^1 + (b\omega^1 + c\omega^2)\omega^2] = \omega^1\omega^1 + \omega^2\omega^2.$$

But from (2.13) and the second of (2.11) we find that $p = r = 1, q = 0$. Therefore (2.13) and (2.14) assume the form

$$\omega^1 = \omega^1, \quad \omega^2 = \omega^2, \quad a\omega^1 + b\omega^2 = - \omega^1, \quad b\omega^1 + c\omega^2 = - \omega^2. \tag{2.15}$$

From the last two of (2.15) we find that

$$\omega^3 = K(-\omega^1 + b\omega^2), \quad \omega^3 = K(b\omega^1 - a\omega^2). \tag{2.16}$$

Taking exterior differentials of the first two of (2.15) we find that

$$2\omega^1 \land \omega^1 = \omega^2 \land (\omega^2 + \omega^1), \quad 2\omega^2 \land \omega^2 = \omega^1 \land (\omega^1 + \omega^1). \tag{2.17}$$

It follows from (2.17) that $\omega^1, \omega^2, \omega^1 + \omega^2$ have the following form

$$\omega^1 = A\omega^1 + B\omega^2, \quad \omega^2 = A'\omega^1 + B'\omega^2, \quad \omega^1 + \omega^2 = 2(B\omega^1 + A'\omega^2). \tag{2.18}$$

From (2.5) and (2.9) we find that
\[da = 2(a \omega_1^1 + b \omega_1^2), \quad dc = 2(b \omega_2^1 + c \omega_2^2), \]
\[db = b(\omega_1^1 + \omega_2^1) + a \omega_2^1 + c \omega_1^1. \]

Hence
\[d(ac - b^2) = 2(\omega_1^1 + \omega_2^1)(ac - b^2). \]

Therefore
\[dK = -2(\omega_1^1 + \omega_2^1)K. \]

3. **An associated Riemannian space** \(\mathcal{R} \). Consider a Riemannian space \(\mathcal{R} \) defined over \(D \) whose metric is given by
\[ds^2 = \Pi = (\omega_1^1)^2 + (\omega_2^1)^2. \]

We shall call this space the **associated Riemannian space**.

As is well known for Riemannian spaces [2] there exists an unique form \(\psi^1 = -\psi_1^2 \) such that
\[d\omega^1 = \omega^2 \wedge \psi_2^1, \quad d\omega^2 = \omega^1 \wedge \psi_1^2. \]

That this form is unique follows from assuming there are two forms \(\psi_1^1, \psi_2^2 \) satisfying (3.2). That is, not only does (3.2) hold but also
\[d\omega^1 = \omega^2 \wedge \psi_2^1, \quad d\omega^2 = \omega^1 \wedge \psi_1^2. \]

Subtracting (3.2) from the above it follows that
\[\omega^2 \wedge (\psi_2^1 - \psi_2^2) = 0, \]
\[\omega^1 \wedge (\psi_1^2 - \psi_1^1) = 0. \]

But since \(\omega^1, \omega^2 \) are linearly independent, \(\psi_1^2 = \psi_2^1 \). From the first of (2.10) with first \(i=1 \), then \(i=2 \) and using (2.17) we find readily that
\[\psi_1^2 = \frac{1}{2}(\omega_1^2 - \omega_2^1). \]

satisfies (3.2) and hence is the desired unique form.

Using (2.10) we find that
\[d\psi_1^2 = \frac{1}{2} \left[(\omega_1^1 - \omega_2^2) \wedge (\omega_2^1 + \omega_1^2) + \omega^1 \wedge \omega_3^2 - \omega^2 \wedge \omega_3^1 \right]. \]

Hence from (2.12), (2.16) and (2.18) we find that
(3.4) \[d\psi_1^2 = - (G + H)\omega^1 \wedge \omega^2, \]

wherein \(H \) is the mean curvature of \(S \) and

(3.5) \[G = A'(A' - A) + B(B - B'). \]

It follows that

(3.6) \[\mathcal{K} = G + H \]

is the Gaussian curvature of the associated Riemannian space. We shall call this curvature the associated curvature of \(S \). The associated curvatures of all surfaces having the same second fundamental forms are of course the same.

4. Integral formulas on \(S \). Before developing the formulas we shall use to prove the theorem, it will be necessary to consider the effect on the functions \(a, b, c \) and the forms \(\omega_i, \omega_j \) by a change of conjugate frame.

Let \(F' = X - E'_1, E'_2, E'_3 = E_3 \) be a second conjugate frame. Letting

\[E'_1 = u' x_\rho, \quad E'_2 = v' x_\rho, \]

and noting that \(E'_1, E'_2 \) have the same orientation as \(E_1, E_2 \), and are also orthonormal with respect to \(\mathcal{II} \) (cf. 2.4) we may write

(4.1) \[E'_1 = E_1 \cos \theta + E_2 \sin \theta, \quad E'_2 = -E_1 \sin \theta + E_2 \cos \theta, \]

\(\theta \) being a function of \(u^1, u^2 \) of class \(C' \).

The functions \(a', b', c' \) corresponding to \(a, b, c \) are readily found to be given by

(4.2) \[a' = a \cos^2 \theta + b \sin 2\theta + c \sin^2 \theta, \quad 2b' = (c - a) \sin 2\theta + 2b \cos 2\theta, \quad c' = a \sin^2 \theta - b \sin 2\theta + c \cos^2 \theta. \]

Since

\[U'^\alpha = U^\alpha \cos \theta + V^\alpha \sin \theta, \quad V'^\alpha = -U^\alpha \sin \theta + V^\alpha \cos \theta \]

it follows that, if \(\phi_i, \phi_j \) are the forms corresponding to \(\omega_i, \omega_j \),

(4.3) \[\phi^1 = \omega^1 \cos \theta + \omega^2 \sin \theta, \quad \phi^2 = -\omega^1 \sin \theta + \omega^2 \cos \theta. \]

Moreover

(4.4) \[\phi^1 \wedge \phi^2 + \omega^1 \wedge \omega^2. \]

Direct computation from (4.1) gives
\[\begin{align*}
\phi_1 &= \omega_1 \cos^2 \theta + \frac{1}{2} (\omega_1^2 + \omega_2) \sin 2\theta + \omega_2 \sin^2 \theta, \\
\phi_2 &= \omega_1 \sin^2 \theta - \frac{1}{2} (\omega_1^2 + \omega_2) \sin 2\theta + \omega_2 \cos^2 \theta,
\end{align*}\]

\[\begin{align*}
\phi_1 &= \frac{1}{2} (\omega_2 - \omega_1) \sin 2\theta + \omega_1 \cos^2 \theta - \omega_2 \sin^2 \theta + d\theta, \\
\phi_2 &= \frac{1}{2} (\omega_2 - \omega_1) \sin 2\theta - \omega_1 \sin^2 \theta + \omega_2 \cos^2 \theta - d\theta, \\
\phi_3 &= \omega_3 \cos \theta + \omega_3 \sin \theta, \quad \phi_3 = -\omega_3 \sin \theta + \omega_3 \cos \theta.
\end{align*}\]

It follows from the third and fourth of (4.5) that \(d\psi_3^2\) is independent of the conjugate frame \(F\), a fact which is geometrically evident.

We find it convenient at this point to note, using (2.4) and (2.6), that

\[\omega^1 \wedge \omega^2 = U_1 V_2 d\omega^1 \wedge d\omega^2 = (U_1 V_2 - U_2 V_1) d\omega^1 \wedge d\omega^2.\]

We note (4) that

\[U_1 V_2 - U_2 V_1 = d^{1/2},\]

wherein \(d = \det (d_{\alpha \beta})\). Hence

\[\omega^1 \wedge \omega^2 = d^{1/2} d\omega^1 \wedge d\omega^2 = K^{1/2} g^{1/2} d\omega^1 \wedge d\omega^2 = K^{1/2} dA,\]

\(dA\) being “the element of area” of \(S\).

Let us now define auxiliary functions \(y_i\) by the formulas

\[y_i = X \cdot E_i.\]

We find readily that

\[dy_1 = \omega_1^1 + b\omega_1^2 + \omega_1^2 y_i, \quad dy_2 = b\omega_1^2 + c\omega_2^1 + \omega_2^1 y_i.\]

We note from (4.2) and (4.5) that the following forms are independent of the frame \(F\):

\[\begin{align*}
\omega_1 &= K^{1/2} (y_1 \omega_1^2 - y_2 \omega_1^1), \\
\omega_2 &= K^{1/2} [y_1 (b\omega_1^1 + c\omega_2^2) - y_2 (a\omega_1^2 + b\omega_2^2)], \\
\omega_3 &= K^{1/2} (\omega_1^1 - \omega_2^1), \\
\omega_4 &= K^{1/2} [2b(\omega_1^1 - \omega_2^1) + (c - a)(\omega_2^2 + \omega_2^1)].
\end{align*}\]
wherein
\[z_1 = (a - c)y_1 + 2by_2, \quad z_2 = 2by_1 + (c - a)y_2. \]

Stokes' formula applied to a linear form \(\omega \) may be written as
\[
\int_C \omega = \iint_R d\omega,
\]
wherein \(C \) is the boundary of the simply connected region \(R \). Applying this formula to the forms (4.8) in turn, and recalling that \(S \) was assumed closed and convex, we find that
\[
\begin{align*}
\iint_S (H + Ky_3) dA &= 0, \\
\iint_S (1 + H y_3) dA &= 0, \\
\iint_S K(p + 2f^\circ y_\circ) dA &= 0, \\
\iint_S K[p + 4(a + c)G] dA &= 0,
\end{align*}
\]
(4.9)
wherein
\[
\begin{align*}
p &= a^2 + c^2 - 2ac + 4b^2, \\
f^1 &= aA + 2bB + cA', \\
f^2 &= aB + 2bA' + cB'.
\end{align*}
\]
The first and second of (4.9) are of course the familiar formulas associated with closed surfaces, the first being Minkowski's formula [2].

The first of (4.10) using (2.12) may be written in the form
\[
(4.11) \quad p = (a - c)^2 + 4b^2 = (a + c)^2 - 4(ac - b^2) = 4(H^2 - K)/K^2.
\]
Hence \(p \geq 0 \) on \(D \), the equality holding only at an umbilical point of \(S \).

Using (3.6) we may write the fourth of (4.9) in the form
\[
(4.12) \quad \iint_S H(2\mathcal{K} - H) dA = \iint_S K dA.
\]
Formula (4.12) relates the mean and associated curvatures of \(S \) with the curvatura integra, and hence to the genus of \(S \).

Consider now the first of (2.12) written in the form
\[
2H/K = a + c.
\]
From (2.18) and (2.19) we find readily that
\[
d(a + c) = 2(f^1\omega^1 + f^2\omega^2).
\]
Therefore in case the ratio of the mean to the Gaussian curvature is a constant, the third of (4.9) assumes the form
\[\int \int_{S} K p dA = 0. \]

Hence since \(p \geq 0 \), it follows that every point of \(S \) is an umbilic, and \(S \) is a sphere.

5. **The proof of the theorem.** The formulas developed in the previous sections have analogous forms for the surface \(\overline{S} \) of the theorem. We shall denote the corresponding expressions for \(\overline{S} \) by the same but barred letters.

The homeomorphism \(h: S \rightarrow \overline{S} \) induces a homeomorphism \(h^* \) on contravariant tensors at a point \(X \) of \(S \) and a homeomorphism \(h_* \) on covariant tensors at a point \(X \) of \(S \) into contravariant and covariant tensors respectively at \(\overline{X} = hX \) on \(\overline{S} \).

Let \(F = X - E_1, E_2, E_3 \) be a given conjugate frame of \(S \). We take for the frame of \(\overline{S} \), the image of \(F \), that is
\[
\bar{F} = hX - h^*E_1, h^*E_2, E_3,
\]
\(E_3 \) being the unit normal vector of \(S \). This frame \(\bar{F} \) is a conjugate frame on \(\overline{S} \) since the form \(\Pi \) is preserved under \(h \). Using such corresponding frames on \(S \) and \(\overline{S} \), it follows that
\[
(5.1) \quad \bar{\omega}^i = h_*\omega^i.
\]

By assumption \(K = \overline{K} \), hence from (2.20)
\[
\bar{\omega}^1 + \bar{\omega}^2 = \omega^1 + \omega^2.
\]

From (2.18) and its analogue for \(\overline{S} \), it follows that
\[
(5.2) \quad \bar{A} + \bar{A}' = A + A', \quad \bar{B} + \bar{B}' = B + B'.
\]

Since \(\Pi = \Pi' \), from (3.1), (3.3) and (3.5) it follows that
\[
(5.3) \quad \bar{\omega}^2 - \bar{\omega}^1 = \omega^2 - \omega^1.
\]

Moreover from (4.2) and the analogue of (4.5) for \(\overline{S} \), the form
\[
\bar{\omega} = K^{1/2} \left[2b(\omega^1 - \omega^2) + (c - a)(\bar{\omega}^1 + \bar{\omega}^2) \right]
\]
is independent of the frame \(F \), and hence is a meaningful linear form on \(S \). Using (5.1), (5.2) and (5.3) we find that
\[
(5.4) \quad d\bar{\omega} = K[C'K + 4(a + c)G']dA,
\]
wherein
\[C' = 2\delta + 4\left(H\overline{H} - K\right)/K^2, \]
\[2G' = 2(A'\overline{A}' + B\overline{B}) - \overline{AA}' - A\overline{A}' - B\overline{B}' - \overline{BB}', \]
\[\delta = \begin{vmatrix} a - \overline{a} & b - \overline{b} \\ b - \overline{b} & c - \overline{c} \end{vmatrix}. \]

Application of Stokes' formula to the form \(\phi \) over the closed surface \(S \) gives
\[\int \int_S K\left[C'K + 4(a + c)G'\right]dA = 0. \] (5.5)

Subtracting the last of (4.9) from (5.5), we obtain on using (2.12) and (3.6)
\[\int \int_S \left[K^2\delta + 2H(2G' - G - \overline{G})\right]dA = 0. \] (5.6)

Defining \(\Delta \) by the formula
\[\Delta = \begin{vmatrix} A - A' - (\overline{A} - \overline{A}') & B - B' - (\overline{B} - \overline{B}') \\ B - \overline{B} & A' - \overline{A}' \end{vmatrix}, \] (5.7)
we find that
\[\Delta = 2G' - G - \overline{G}. \]

Hence (5.6) assumes the form
\[\int \int_S (K^2\delta + 2H\Delta)dA = 0. \] (5.8)

Since \(\overline{\delta} - \overline{\delta} = ac - b^2 \), it is known [1] that \(\delta \leq 0 \) over \(D \), the equality holding if and only if \(a = \overline{a}, b = \overline{b}, c = \overline{c} \). Moreover use of (5.2) enables us to write (5.7) in the form
\[\Delta = -2 \begin{vmatrix} A' - \overline{A}' & \overline{B} - B \\ B - \overline{B} & A' - \overline{A}' \end{vmatrix}. \]

It follows that \(\Delta \leq 0 \). From the fact that \(\delta \leq 0 \) over \(D \), and from (5.8) it follows that
\[\int \int_S H\Delta dA \geq 0, \]
and from \(\Delta \leq 0 \), that
\[\int \int_S H\Delta dA \leq 0. \]
Hence
\[\iint_S H \Delta dA = 0; \text{ therefore } \iint_S K^2 \delta dA = 0. \]
Hence \(\delta = 0 \), and the first fundamental forms of \(S \) and \(\overline{S} \) are the same. Hence the homeomorphism \(h \) is an isometry and therefore a rigid motion, as was to be proved.

Suppose that the Gaussian curvature \(K \) is a constant. From (2.20) and (2.18) it follows that
\[A + A' = 0, \quad B + B' = 0. \]
We may write (3.5) in the form
\[G = 2(A^2 + B^2) \geq 0. \]
Since \(p \geq 0 \), \(G \geq 0 \) it follows from the last of (4.9) that
\[G = 0, \quad p = 0. \]
Hence \(S \) is a sphere. This furnishes the promised simple proof of Liebmann's theorem.

We observe that if the associated curvature of \(S \) is equal to its mean curvature then \(G = 0 \), and \(S \) is a sphere.

References

2. ———, *Introduction to differential geometry* (mimeographed notes), the University of Chicago.

Michigan State University