
ANOTHER NOTE ON PARACOMPACT SPACES

E. MICHAEL1

1. Introduction. The purpose of this paper is to obtain some new

characterizations of paracompact spaces, one of which implies that

the image of a paracompact space, under a continuous and closed

mapping, must be paracompact. This answers the author's Research

Problem 29 in [4].

Call a collection ffi of subsets of a topological space closure-preserv-

ing if, for every subcollection (BC®> the union of closures is the

closure of the union (i.e. U [B\ BE®} = [U {B\ BE®} ]~). Any locally

finite2 collection is certainly closure-preserving, but the converse is

generally false even for discrete spaces. Nevertheless, it will be shown

that, both in the definition of paracompactness and in the character-

izations obtained by the author in [3], "locally finite" can be re-

placed by "closure-preserving." This implies the corollary mentioned

above, since the image of a closure-preserving collection under a

closed mapping is again closure-preserving.

In the statements of the theorems below, a covering (and a refine-

ment) is a collection of sets which covers the space; its elements need

not be open unless that is specifically assumed.3 Theorem 1 strength-

ens [3, Lemma l], and Theorem 2 strengthens [3, Theorem l].

Theorem 1. The following properties of a regular topological space

X are equivalent:

(a) X is paracompact.*

(b) Every open covering of X has a closure-preserving open refine-

ment.

(c) Every open covering of X has a closure-preserving refinement.
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1 This paper was written while the author was a member of a National Science

Foundation project at the University of Washington.

2 A collection (2 of subsets of X is locally finite if every x E X has a neighborhood

intersecting only finitely many elements of (2.

3 This might be the place to point out that all the coverings (and refinements)

appearing in the diagram on p. 835 of [3] should have been labeled open.

* A Hausdorff space is paracompact if every open covering has a locally finite open

refinement.
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(d) Every open covering of X has a closure-preserving closed refine-

ment.

Corollary 1. The image of a paracompact space, under a continu-

ous, closed mapping, must be paracompact.

Theorem 2. A regular topological space is paracompact if and only

if every open covering has a cr-closure-preserving open refinement!'

Theorem 2 raises the question of whether one can also replace

"a-locally finite" by "a-closure-preserving" in the Nagata-Smirnov

[5; 6] characterization of metrizability for regular spaces (i.e. there

exists a a-locally finite base for the open sets). The answer is "no,"

as is shown by the subset of the Stone-Cech compactification of the

space iV of integers consisting of N and one point xG^-

Concerning Corollary 1, it should be remarked that the analogous

result for normal spaces was proved in a three-line proof by G. T.

Whyburn [7, Theorem 9], and that similar easy proofs can be given

for many other familiar types of spaces: collectionwise normal, per-

fectly normal, normal and countably paracompact.6 Of course the

proof of Corollary 1 is equally trivial, but only after one has the char-

acterization of paracompactness in Theorem 1 (c) or (d).

The only difficult proof in this paper is that (d) implies (a) in

Theorem 1; this will be shown in §2. The remainder of Theorem 1

((a)—*(b)—>(c)—*(d)) is trivial, and Corollary 1 and Theorem 2 are

easy consequences of Theorem 1; the proofs will be given in §§3, 4,

and 5.

2. Proof that (d)—>(a) in Theorem 1. Throughout this section, we

shall assume that the Fi-space7 X satisfies (d) of Theorem 1. Our aim

is to prove that X must be paracompact, by showing every open

cover 11 of X has a a-locally finite (in fact o--discrete)8 open refine-

ment W; this is sufficient by [3, Theorem l]. We begin with two

lemmas.

6 Following recent trends in terminology, we call a collection X) of subsets a-

closure-preserving if 13 =1-);^ X)i, with each TJi closure-preserving. It should be ob-

served that, as the proof shows, the theorem's requirement that the elements of the

refinement V be open can be weakened to require only that each "U, have an open

union.

' Using Dowker's characterization [l, Theorem 2]: Every countable open cover-

ing {£/,-}"_, has a closed refinement M.}*., with Ai E Ui for all *'.

7 For this part of Theorem 1, one need not assume that X is regular.

8 V? is discrete if every x E X has a neighborhood intersecting at most one

WE W; it is a-discrete (resp. a-locally finite) if *W "-U*_j W„ with each W; discrete

(resp. locally finite).
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Lemma 1. If \ 27a}aeA is an indexed open covering of X, then there

exists an indexed closure-preserving closed covering {Ca}aeA of X such

that Ca C Ua for all a.

Proof. By assumption, { 27„}„sa has a closure-preserving closed

refinement (B. For each BE®, pick ana(B) such that BE 27a(B>. For

every a, let

Ca = U{BE®\a(B) = a}.

Then CaEUa for all a, and {Ca}aGA is a closure-preserving closed

covering of X because (B is. This completes the proof.

Lemma 2. X is normal.

Proof. Let Eu E2 be disjoint, closed subsets of X. Then

{X — Ei, X — E2} is an open covering of X, and hence there exists a

closed covering { Ci, C2] of A such that C,C(A —£,-) for i= 1, 2. But

then the open sets X—Ci and X — C2 separate Fi and E2, and the

proof is complete.

After these preliminaries, let { Ua}aeA be an open covering of X

which, for convenience, has been indexed by a well-ordered index

set A. We must show that this covering has a cr-locally finite open

refinement.

Our first step is to construct, for each positive integer i, a family

{ Ca,i}aeA of subsets of A satisfying the following conditions for all i:

(1) {Ca,i}ae\ is a closure-preserving closed covering of X, and

Ca.iE Ua for all a.

(2) Ca,i+ir\Cli,i = 0 for all a>23.
The construction is simple. A covering {Ca,i}„eA, satisfying (1) for

i = l, can be found by Lemma 1. Suppose that coverings {Ca,,-}a€A

have been picked to satisfy our conditions for 2=1, • • • , re, and let

us construct (Ca.n+i}oeA. Let

£/„,„+, = Ua - ( U C„,„)

for all a£A. The sets 27a,n+i are open because {Ca,„}„<=A is closure

preserving, and they cover X because, if xEX, then xE Ua.n+i for the

first a for which x£27a. We now use Lemma 1 to pick a closure-

preserving, closed covering { Ca,n+i}aeA of X such that Ca,„+iC 27a.n+i

for all a. Condition (1) is obviously satisfied for i = n + l, and (2)

holds for i = n by the definition of the sets 27„,„+i and the fact that

Ca,n+iEUa.n+i for all a.

For each a and each i, we now let
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Let us show that

(3) {Fa,,|aGA, i=l, 2, ■ ■ • } is an open covering of X, and

Va.iEUa for all a and i.

(4) Va,i{~\ Vp,i = 0 whenever a^(i.

To see this, note that each Va,i is open because { C^^sa is closure-

preserving. Since { Ca,»}asA is a covering of X, we have

V a.i \_ La,t C_   U a

for all a and i, and this, together with the definition of Va.i, implies

(4). All that remains to be proved is that the sets Va,i cover X. To

show this, pick an xGA\ and let us find a Va.i containing it. Using

the well-orderedness of the index set A, we let

a, = min {a E A | x G Ca,i}, i = 1, 2, • • ■ ,

and then pick a positive integer k such that

oik = min {oci\ i = 1, 2, • • ■ J.

But now

* G   Vak.k+l,

because xECa.k+i for a<ak by the definition of ak, and xECa,k+i for

a>ak by (2) (with i = k and /? = «*) and the fact that xGGat,it by

definition of a*.

To complete the proof, we apply Lemma 1 once more to obtain a

closure-preserving closed covering {.D«,i|aGA, i=l, 2, • • ■ } of A"

such that

Da.i C  Va,i

for all a and i. For each i, we can now apply a lemma of C. H.

Dowker [2]9 (remembering that X is normal by Lemma 2) to obtain

a discrete8 family { Wa.i}aeA of open sets such that

Da.i E  Wa.i C   Va.i

for all a. The collection {JFa,i|a:GA, »=1, 2, • • • } is now the re-

quired a-discrete open refinement of {<7„}aeA, and the proof is com-

plete.

We conclude the section with the statement and proof of the lemma

of Dowker which was used above.

* While this lemma was essentially proved in the middle of p. 308 of [2], it was not

stated explicitly, and for completeness we therefore state and prove it below.
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Lemma 3 (Dowker). If { Fx}xea is a disjoint collection of open sub-

sets of a normal space X, if 7>x C Fx for each X, and if Uxe a D\ is closed,

then there exists a discrete* family {IFxjxeA of open subsets of X such

that

7>x C Wx C Fx

for all X.

Proof. Let 5= {x£A|some neighborhood of x intersects at most

one V\}. Then 5 is open, and contains the closed set \J\<=\D\. By

normality, there exists an open REX such that

( U Z>x) C R E R C S,
VxeA      /

and now the sets

Wx = Fx H R

satisfy all our requirements.

3. Proof that (a)->(b)-»(c)-»(d) in Theorem 1. That (a)->(b) fol-

lows from the introductory remark that every locally finite collection

is closure-preserving. That (b)—»(c) is obvious. To show that (c)—>(d),

let 1) be an open covering of X. Since X is regular (this is the only

place in the proof of Theorem 1 where this assumption is used),

there exists an open covering W of X such that { W\ WE*W} is a re-

finement of 1). By assumption (c), there now exists a closure-preserv-

ing refinement of (R of *W. But then {2?|i?£(ft} is a closure-preserving

closed refinement of TJ, and this proves (d).

4. Proof of Corollary 1. Let X be paracompact, and let / be a con-

tinuous, closed map from X onto a topological space Y. We must

show that Y is paracompact. Since Y is certainly 7i, it suffices, by

Theorem 1 and footnote 7, to show that every open covering 1) of Y

has a closure-preserving closed refinement. Let "W = {/_1(V)\ VE°v};

then W is an open covering of X, and hence, by paracompactness, has

a closure-preserving closed refinement d. But then

{f(A)\AEa}

is the required closure-preserving closed refinement of 13, and the

proof is complete.

5. Proof of Theorem 2. This proof is quite similar to the proof of

[3, Theorem l]. To prove the nontrivial part of the theorem, let us

assume that A is a regular space, every open covering of which has a
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a-closure-preserving open refinement; we must show that X is para-

compact. By Theorem 1, we need only show that every open covering

"W of X has a closure-preserving refinement (B. We begin with two

elementary lemmas about closure-preserving collections, whose proof

can be left to the reader.

Lemma 4. If SF is a closure-preserving collection of closed subsets of

a topological space X, and if B EX is closed, then {FC^B1 FE$} is also
closure-preserving.

Lemma 5. i/ {Ca}<,eA is a locally finite collection of subsets of a

topological space X, and if, for every a, &a is a closure-preserving (with

respect to X) collection of subsets of Ca, then U {(Ba| «GA} is also closure-

preserving.

To prove the theorem, let (R be an open covering of A". By the

regularity of X, there exists an open covering S of X such that

{S\ SE&} is a refinement of (R. By assumption, S has an open refine-

ment V=(Jr~i "0i, where each Vi is closure-preserving. Let

Vi=D {v\VEVi} i=l, 2, •■■

and let

C, = X,

<-i
d = X - U Vi i = 2, 3, • • • .

p-i

Observe that each C, is closed, and that { C,}<™ i is locally finite. Now

finally let

(B,= {Vr\d\ VEVi} i= 1, 2, •••
00

(B = U (B,-.
i=i

Then certainly (B is a refinement of (R. To see that it is closure-

preserving, observe that each (&t is closure-preserving by Lemma 4,

and hence so is (B by Lemma 5 and the fact that every element of <B<

is a subset of C,-. This completes the proof.
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COMPACT MAPPINGS

EDWIN HALFAR

In the Memoir Open mappings on locally compact spaces, G. T.

Whyburn shows the equivalence of his definition of compact map-

pings and that of E. A. Vainstein [l ] under the assumption that the

spaces involved are separable and metric. In the following, it is shown

that the two are equivalent on more general spaces provided that the

range space is suitably restricted. The remainder of the note is con-

cerned with a result about the relation between closedness of a map-

ping and continuity and with an elaboration of a result concerning

quasi-interior mappings.

In general, the spaces are Fi unless otherwise stated. The mapping

(i.e. continuous function) f(X) = Y is closed if F a closed subset of X

implies/(F) is closed;/is compact if K a compact subset of Y implies

f~l(K) is a compact subset of X; f is quasi-interior if for any yEY

and any open set U in X which contains a compact component of

f~l(y)< y is interior to /(27). A is an inverse set if A =f~1(A). Also,

Go will denote the union of all sets of the type/_1(y) which are subsets

ofG.

Theorem 1. Iff(X) = Y is a closed mapping and if for each yEY,

f~l(y) is compact, then f is compact.

Let A' be a compact subset of Y and g a covering of f~l(K). Since

/ is closed, for each open subset G of X, Go is an open inverse set, and

/(Go) is an open subset of Y. For some yEK, f~l(y) may fail to be a

subset of a single element of g, but since f~l(y) is compact, a finite

subcollection g,i of g will cover/_1(y). Let G* be the union of the ele-

ments of 9i. Then G* is a non-null open inverse set. Thus, the collec-
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