COMPACTNESS OF THE STRUCTURE SPACE OF A RING

M. SCHREIBER

Jacobson [1] has shown that a topology may be defined on the set S_A of primitive ideals of any nonradical ring A. With this topology S_A is called the structure space of A. The topology is given by defining closure: if $T = \{p\}$ is a set of primitive ideals then \bar{T} is the set of primitive ideals which contain $\bigcap \{p \mid p \in T\}$. One of Jacobson’s results is that if A has a unit then S_A is compact. By working with open sets rather than closure we obtain a simpler proof of this fact and also a new sufficient condition for compactness: every 2-sided ideal of A is finitely generated.

Let p, q, \ldots, be points of S_A (primitive ideals). For each $x \in A$ write $a(x)$ for the principal (2 sided) ideal generated by x, and let $U_x = \{p \mid p \nsubseteq a(x)\}$.

Lemma 1. $\{U_x\}_{x \in A}$ is a basis of the topology.

Proof. Since U_x is the complement of $\{p \mid p \nsubseteq a(x)\}$ and the latter set is clearly closed, all the U_x are open. Let U be an open subset of S_A, let $F = cU$, and take $p \in U$. Since $F = F = \{q \mid q \nsubseteq \bigcap F\}$ and $p \in F = F$, we have $p, F \cap F$, where $F = \{q \mid q \in F\}$. Hence $\exists a \in A$ such that a belongs to the set-theoretic difference $F - p$, and $p \in U_a$. If $q \nsubseteq (a)$ then $q \nsubseteq F$, so that $q \in F$, or $q \in cF = U$. Hence $p \in U_a \subseteq U$.

Theorem 1. If A has a unit then S_A is compact.

Proof. We prove that any basic open cover has a finite subcover. Let $U = \{U_\mu = \{p \mid p \nsubseteq (a_\mu)\}\}$ be a basic open cover. Then $S_A = \bigcup_\mu U_\mu = \{p \mid \exists \nu \text{ such that } p \nsubseteq (a_\nu)\} = \{p \mid p \nsubseteq \sum_\mu (a_\mu)\}$. Write $I = \sum_\mu (a_\mu)$. In a ring with unit every 2 sided ideal can be imbedded in a primitive ideal [2]. But $\{p \mid p \nsubseteq I\} = S_A$ exhausts all primitive ideals. Hence $I = A$, so that the unit 1 is in I. Hence $\exists b_1, \ldots, b_n$ in $(a_{\mu_1}) + \cdots + (a_{\mu_n})$ such that $1 = b_1 + \cdots + b_n$, so that $A = (a_{\mu_1}) + \cdots + (a_{\mu_n}) = I$. But this means that $S_A = \{p \mid p \nsubseteq \sum_1^n (a_{\mu_i})\} = \bigcup_1^n U_{\mu_i}$.

The converse of Theorem 1 is false, as is shown by the ring $2J$ of even integers. It is easy to see that the open sets in the structure space of $2J$ are complements of finite sets (the proof in [1] of this same fact for the ring J of all integers carries over mutatis mutandis). Hence if $\{G_\alpha\}$ is an open cover, then G_1, say, misses only finitely many points, so that $\{G_\alpha\}$ possesses a finite subcover.

Received by the editors July 1, 1956.
Theorem 2. If every (2 sided) ideal of A is finitely generated then S_A is compact.

Proof. With the notation as in Theorem 1, let $\mathcal{U} = \{U_\mu\}$ be a basic open cover. Then $S_A = \bigcup_\mu U_\mu = \{ p \mid p \not\in \sum_\mu (a_\mu) \}$. Write $I = \sum_\mu (a_\mu)$, and let b_1, \cdots, b_n be a basis of I, so that $I = \sum_i (b_i)$. Each b_i lies in an ideal generated by finitely many of the a_μ, and since there are finitely many b_i, the set $\{b_1, \cdots, b_n\}$ is generated by finitely many a_μ, say $a_{\mu_1}, \cdots, a_{\mu_r}$. That is, $I = \sum_{j=1}^r (a_{\mu_j})$. But this means that $S_A = \{ p \mid p \not\in \sum_{j=1}^r (a_{\mu_j}) \} = \bigcup_{j=1}^r U_{\mu_j}$, so that \mathcal{U} has a finite subcover.

We conclude with a comment which may be regarded as a partial converse to Theorem 2. If S_A is compact then as far as the structure space goes A may as well have been finitely generated. The precise theorem is

Theorem 3. If S_A is compact then there exists a finitely generated (2 sided) ideal I of A such that S_A is homeomorphic to S_I.

Proof. Here S_I means the structure space of I as a ring. By a theorem of Kaplansky [3] S_I is homeomorphic to $\{ p \mid p \not\in I \}$, for any ideal I of A. We have $S_A = \bigcup_a U_a = \bigcup_{i=1}^r U_{a_i}$ by compactness. Write $I = (a_i) + \cdots + (a_n)$. Then $S_A = \{ p \mid p \not\in I \}$ and this is homeomorphic to S_I by the quoted theorem.

Bibliography

2. ———, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. vol.

University of Chicago and Cornell University