A NOTE ON THE SPAN OF TRANSLATIONS IN L^p

C. S. HERZ

Suppose $f \in L^1 \cap L^p$. f is said to have the Wiener closure property,\(^\gamma\) (C), if the translates of f span L^p. Since $f \in L^1$, the Fourier transform \hat{f} is well defined. Let $Z(f)$ be the set of zeros of \hat{f}. One would like to reformulate (C) in terms of structural properties of the closed set $Z(f)$. The problem seems quite difficult; in this note we show that (C) is nearly equivalent to a uniqueness property of $Z(f)$.\(^\delta\)

It is assumed that the notion of the spectrum\(^\delta\) of a bounded continuous function is familiar.

Definition. A closed set is of type U^q if the only bounded continuous function in L^q with spectrum contained in the set is the null function.\(^\gamma\)

We shall say that f has property (U) if $Z(f)$ is of type U^q where $1/p + 1/q = 1$. Pollard, [4], has observed, what is true for any locally compact Abelian group, that

Theorem 1. For $1 \leq p < \infty$, (U) implies (C).

In the converse direction one has trivially,

Theorem 2. For $2 \leq p < \infty$, (C) implies (U).

Of course, this also holds for $p = 1$. What is left open is the case $1 < p < 2$. Here we have two classes of results corresponding to weakening the conclusion and strengthening the hypothesis respectively.

Definition. A closed set is of type U^q^* if there is no nontrivial complex measure of bounded variation with spectrum (support) in the set whose Fourier-Stieltjes transform belongs to L^q.

Presented to the Society, October 27, 1956 under the title The closure of translations in L^p; received by the editors June 27, 1956 and, in revised form, October 3, 1956.

1 The research for this paper was supported by the United States Air Force under Contract No. AF18(600)-685 monitored by the Office of Scientific Research.

3 This is the viewpoint of [4].

4 For an elaborate treatment of spectral theory see [3]; however [5] will be more accessible to the classical analyst. For assertions about the spectrum not proved in the text see these references.

5 The definition here is equivalent to that in [4]; the proof of equivalence is essentially the same as the proofs given there. Simple modifications of the method show that sets of uniqueness can be defined using any of a large variety of summability methods, including, when $q < \infty$, ordinary convergence of trigonometric integrals.
We shall say that \(f \) has property \((U^*)\) if \(Z(f) \) is of type \(U^* \) where \(1/p + 1/q = 1 \).

**Theorem 2*. For \(1 \leq p < \infty \), \((C)\) implies \((U^*)\).

The only result which requires any imagination is the next. It should be noted that the proof makes only trivial use of the "natural" assumption, \(f \in L^p \), but it depends strongly on the fact that \(f \in L^1 \).

Theorem 3. If for some \(\epsilon > 0 \), \(f \in Lip \epsilon \), then \((C)\) implies \((U)\).

We remark that the extra hypothesis is certainly fulfilled\(^6\) if \(\int |f(x)| \, |x|^r \, dx < \infty \).

To prove the above theorems, first observe that \((C)\) is equivalent to the statement: if \(\phi \in L^q \) and the convolution \(f \ast \phi = 0 \), then \(\phi = 0 \). Let \(g \in L^1 \) be such that \(g \) vanishes outside a compact set. If \(f \ast \phi = 0 \) then \(f \ast (g \ast \phi) = 0 \) while on the other hand, \(\phi = 0 \) if and only if \(g \ast \phi = 0 \) for each such \(g \). Thus we may replace \(\phi \) if necessary by \(g \ast \phi \) and consider only bounded continuous functions \(\phi \in L^q \) with compact spectrum \(\Lambda(\phi) \). The defining property of the spectrum is that \(f \ast \phi = 0 \) implies \(\Lambda(\phi) \subseteq Z(f) \); this proves Theorem 1. The propositions in the converse direction are argued by contradiction. We assume there exists some non-null \(\phi \in L^q \) with \(\Lambda(\phi) \subseteq Z(f) \) and wish to prove that \(f \ast \phi = 0 \), or something just as good. This is essentially a spectral synthesis problem, and as such it appears to require extra conditions. For example if \(\phi \) is known to be a Fourier-Stieltjes transform, \(\Lambda(\phi) \subseteq Z(f) \) implies \(f \ast \phi = 0 \); this establishes Theorem 2*. The observation that it suffices to consider \(\phi \)'s with compact spectrum shows that for \(1 \leq q \leq 2 \), type \(U^q \) is identical with type \(U^q* \) since every \(\phi \in L^q \) with compact spectrum is a Fourier transform. Theorem 2 is therefore an immediate corollary of Theorem 2*.

All the foregoing is valid for locally compact Abelian groups. However, for simplicity, we present the details of the proof of Theorem 3 only for the real line. The extension to the general case is clearly indicated in [3], (cf. the proof there of Lemma 4.4). Suppose \(Z(f) \) is not of type \(U^q \). Then there is a non-null \(\phi \in L^q \) with compact spectrum \(\Lambda(\phi) \subseteq Z(f) \). Let \(f^{(n)} \) denote the convolution of \(f \) with itself \(n \) times. If we can show that \(f^{(n)} \ast \phi = 0 \) for some \(n \) we are through, for let \(n \) be the first integer for which this is true. If \(n = 1 \), fine! Otherwise \(f^{(n-1)} \ast \phi \) is a non-null function in \(L^q \) with spectrum \(\Lambda(f^{(n-1)} \ast \phi) \subseteq \Lambda(\phi) \subseteq Z(f) \) and \(f \ast (f^{(n-1)} \ast \phi) = 0 \). The Lipschitz condition is just what we need to guarantee the existence of an \(n \) so that \(f^{(n)} \ast \phi = 0 \).

Choose an \(h > 0 \) and set \(k(x) = (x/2)^{-2} \sin^2 x/2 \). Define \(\Phi_h(t) \)

\(^6\) Theorem 3 is supposed to compare favorably with Theorem B of [4].
= (2\pi)^{-1} \int \exp (-itx) k(hx) \phi(x) dx. \textrm{ Then } \Phi_h \textrm{ vanishes outside the set } \Lambda^h \textrm{ consisting of those points at a distance } <h \textrm{ from } \Lambda(\phi). \textrm{ Moreover, } f^{(n)}(x) = \int f^{(n)}(x-y) \phi(y) dy = \lim_{h \to 0} \int \exp (itx) f^{(n)}(t) \Phi_h(t) dt. \textrm{ Hence it suffices to prove that }
abla f^{(n)}(t) \Phi_h(t) dt = o(1) \textrm{ as } h \to 0. \textrm{ Now } f \textrm{ vanishes on } \Lambda(\phi) \textrm{ and } f \in \text{Lip } \epsilon. \textrm{ Hence if } t \textrm{ is within } h \textrm{ of } \Lambda(\phi), \text{ i.e., } t \in \Lambda^h, \nabla(t) = 0(h^\epsilon). \textrm{ Since the integration is extended only over } \Lambda^h, \int f^{(n)}(t) \Phi_h(t) dt = O(h^{\epsilon n}) \int \Phi_h(t) dt. \textrm{ The last integral obviously is } O(h^{-\delta}) \textrm{ for some } \delta \textrm{ (a careful estimate will be considered later) so choose } n > \delta/\epsilon.

The question of the structure of sets of type \(U^q \) is quite open. Let \(T \) be a closed set and \(|T| \) its Lebesgue measure. Obviously \(|T| = 0 \) is, in case \(q \leq 2 \) a sufficient, and in case \(q \geq 2 \) a necessary condition that \(T \) be of type \(U^q \). Exact criteria are available for \(q = 1 \) (\(T \) has empty interior), \(q = 2(|T| = 0) \), and \(q = \infty \) (\(T \) is empty). One would like to interpolate. The next theorem is a step in that direction which gives some content to Theorem 1. We consider \(r \)-tuple trigonometric series or integrals. \(\Lambda^h \) has the same meaning as in the paragraph above, and \(\dim T \) is the Hausdorff dimension of \(T \).

Theorem 4. \(\text{Alternative sufficient conditions that the closed set } T \text{ be of type } U^q, q \geq 2 \) are

1. \(|\Lambda^h| = o(h^{(1-2/q)}) \text{ for each compact subset } \Lambda \text{ of } T \),
2. \(\dim T < 2r/q \), \text{ with the proviso, if } r > 2 \text{, that } q \leq 2r/(r-2).

We shall give the proof of (i) only for ordinary trigonometric integrals. It suffices to show that if \(\phi \in L^q \) is a bounded continuous function with compact spectrum \(\Lambda(\phi) \subset T \) then \(\phi = 0 \). This will be true if, in the previous notation, \(\int |\Phi_h(t)| dt = o(1) \) as \(h \to 0 \). Using the Schwarz inequality, \(\{ \int |\Phi_h(t)| dt \}^2 \leq |\Lambda^h| \cdot \int |\Phi_h(t)|^2 dt \). Next we employ the Parseval relation and the Hölder inequality.

\[
\int |\Phi_h(t)|^2 dt = \int k(hx) \phi(x)^2 dx \\
\leq \left\{ \int k(hx)^{2q/(q-2)} dx \right\}^{1-2/q} \cdot \left\{ \int \phi(x)^q dx \right\}^{2/q} \\
= O(h^{1+2/q}) \cdot O(1).
\]

Combining the estimates, \(\{ \int |\Phi_h(t)| dt \}^2 = |\Lambda^h| \cdot O(h^{1+2/q}) = o(1) \) since \(|\Lambda^h| = o(h^{1-2/q}) \) by hypothesis. (ii) was proved by Beurling [1] for \(r = 1 \) and extended by Deny [2, pp. 144-145].

The conditions of Theorem 4 are clearly unnecessary since an ordinary set of uniqueness is of type \(U^q \) for every \(q, 1 \leq q < \infty \). However the estimates cannot be improved.
In conclusion we mention one amusing problem for r-dimensional Euclidean space. Suppose $f \in L^p$ and vanishes outside a compact set. Then \hat{f} is an entire function of exponential type. For $r=1$, the translates of f span L^p for all p, $1 < p < \infty$, since $Z(f)$ is countable. However consideration of a few Bessel functions leads to the conclusion that for $r>1$ the theorem is certainly false unless $p \geq 2r/(r+1)$. Is this a sufficient condition? Posing the problem otherwise, for what q is the set of real zeros of an entire function of exponential type in r-variables necessarily of type U^q?

Bibliography

Cornell University