ON SQUARE ROOTS OF NORMAL OPERATORS

C. R. PUTNAM

1. All operators in this paper are bounded (linear, everywhere defined) transformations on a Hilbert space of elements x. An arbitrary operator A will be called a square root of a normal operator N if

\[A^2 = N. \]

It is clear that if N possesses the spectral resolution $N = \int z dK(z)$, then any operator of the form $A = \int z^{1/2} dK(z)$, where, for the value of $z^{1/2}$, the choice of the branch of the function may depend on z, is a solution of (1). Moreover, all such operators are even normal.

Of course, equation (1) may have other, nonnormal, solutions A. The object of this note is to point out a simple condition to be satisfied by a square root A guaranteeing that it be normal. This criterion will involve the (closed, convex) set $W = W_A$ consisting of the closure of the set of values (Ax, x) where $||x|| = 1$. (Cf. also [2] wherein is discussed a connection between commutators and the set W.)

The following theorem will be proved:

(I) Let N be a fixed normal operator and let A denote an arbitrary solution of (1). Suppose that there exists a line L in the complex plane passing through the origin and lying entirely on one side of (and possible lying all, or partly, in) the set W_A. Then A is necessarily normal.

It is easy to see that the hypothesis of (I) concerning the line L is surely satisfied if W is a single point or a straight line segment. In this case, A is even the sum of multiples of a self-adjoint operator and the unit operator I. (In fact, there exists some angle θ and some complex number z such that the set W belonging to $e^{i\theta}A + zI$ is a point or a segment of the real axis, and hence $e^{i\theta}A + zI$ is self-adjoint.) In case the set W is actually two-dimensional, the assumption amounts to supposing that 0 is not in the interior of W, although it is allowed of course that 0 be on the boundary.

2. Proof of (I). Clearly, one can choose an angle θ for which the operator $B = e^{i\theta}A$ satisfies $B + B^* \geq 0$. If $B = H + iJ$, where $H = (B + B^*)/2$ and $J = -(B - B^*)/2$ denote the self-adjoint real and imaginary parts of B, then

Received by the editors October 10, 1956.

1 This research was supported in part by the United States Air Force under Contract No. AF 18(603)-139.
\(B^2 = e^{2i\theta}A^2 = (H^2 - J^2) + i(HJ + JH). \)

Since \(B^2 \) is normal and obviously commutes with \(B \), it follows that \(B^2 \) also commutes with \(B^* \); [1]. Consequently \(B^2 \) commutes with each of the operators \(H \) and \(J \). A subtraction of the two relations obtained from (2) by a multiplication by \(H \) on the left and on the right, respectively, now implies \(R + iS = 0 \), where \(R = J^2H - HJ^2 \) and \(S = H^2J - JH^2 \). On taking adjoints, one obtains \(R - iS = 0 \). Therefore \(S = 0 \), that is \(H^2J = JH^2 \); hence, since \(H \geq 0 \), \(HJ = JH \). Consequently \(B \), hence \(A \), is normal and the proof of (I) is now complete.

3. The following is a corollary of (I) and its proof:

(II) Let \(N \) be a fixed self-adjoint operator and let \(A \) denote a solution of (1) for which either (a) \(\Re(Ax, x) \neq 0 \) or (b) \(\Im(Ax, x) \neq 0 \) holds for all \(x \). Then either \(A \) or \(iA \) is self-adjoint according as (a) or (b) holds.

It should be noted that the hypothesis of (II) implies that the line \(L \) of (I) can be chosen either as the imaginary axis or as the real axis according as (a) or (b) holds and that, moreover, no number \((Ax, x) \), for \(\|x\| = 1 \), actually lies on \(L \) (although, of course, such numbers may cluster at a point of \(L \)).

In order to prove (II), note that the angle \(\theta \) occurring in the proof of (I) can now be chosen to be 0 or \(\pi \) in case (a) and \(\pi/2 \) or \(3\pi/2 \) in case (b). Furthermore, \((Hx, x) > 0 \) whenever \(\|x\| = 1 \), so that 0 is not in the point spectrum of \(H \). Since \(e^{2i\theta} \) is real, it follows from the relation (2) that \(HJ + JH = 0 \). This fact combined with the relation \(HJ - JH = 0 \) implies \(HJ = 0 \), hence \(J = 0 \). Thus \(B \) (\(= H \)) is self-adjoint and so \(A = e^{-i\theta}B \). In view of the choice of \(\theta \), the proof of (II) is now complete.

References

Purdue University