CONCERNING REAL VALUED MAPS OF THE n-SPHERE

G. R. LIVESAY

A definition for the width of a closed curve, believed to be new, is used together with some standard homology theory, to prove the following theorem: Let $f: S^n \to E^1$ be continuous, $0 \leq d \leq 2$, p the covering map $S^n \to P^n$. If $X_d = \{x \in S^n \mid$ there exists $y \in S^n$ with $\rho(x, y) = d, f(x) = f(y)\}$, then pX_d carries the nontrivial mod 2 Čech $n-1$ cycle of P^n. This generalizes Theorem 2 of [4], already considerably extended in other directions by Bourgin [2] and Yang [5].

We will use the following notation: E^{n+1} = Euclidean $n+1$ space, ρ is the Euclidean metric, ω is the origin in E^{n+1}. $S^n = \{x \in E^{n+1} \mid \rho(x, \omega) = 1\}$. P^n is projective n space. $p_i: A_1 \times A_2 \to A_i$, $i = 1, 2$ will denote the projection. $\mathcal{C}_p(A) = p$ dimensional Čech homology group of A with coefficients the integers mod 2 (the only coefficients to be used here). $T^2 = S^1 \times S^1$, Δ = diagonal in T^2. In a space X, $\overline{A} = X - A$, A = closure of A.

Lemma 1. Let $g: S^1 \to E^1$ be continuous, X a connected subset of T^2 such that either $p_1X = S^1$ or $p_2X = S^1$. Then there exists $(x, y) \in X$ such that $g(x) = g(y)$.

Proof. If $p_1X = S^1$, then there exists $(x_1, y_1) \in X$ such that $g(x_1) = \max_{x \in S^1} g(x)$, and $(x_2, y_2) \in X$ such that $g(x_2) = \min_{x \in S^1} g(x)$. Then if neither $(g(x_1), g(y_1))$ nor $(g(x_2), g(y_2))$ is on the diagonal in E^2, then they are on opposite sides. If $p_1X \neq S^1$, then we may make the above argument on the second coordinate.

Presented to the Society December 27, 1956 under the title Concerning real valued maps of S_n; received by the editors January 12, 1957.

1 The author is grateful to the Office of Naval Research for their support of this research.
Let S be a metric space with metric p. Define, for a closed curve $\alpha: S^1 \to S$,

$$ \rho_\alpha: T^2 \to E^1 \text{ by } \rho_\alpha(\theta, \theta') = p(\alpha(\theta), \alpha(\theta')). $$

Let $A_d = \{ (\theta, \theta') \in T^2 \mid \rho_\alpha(\theta, \theta') \geq d \}$. Then define the width of the curve α by $w(\alpha) = \text{l.u.b.} \{ d \mid i_*: \mathcal{C}_1(A_d) \to \mathcal{C}_1(T^2) \text{ is not trivial} \}$ (i_* is induced by the inclusion $i: A_d \to T^2$). [If $\alpha: S^1 \to E^2$ is convex, then $\omega(\alpha)$ is the usual minimum distance between parallel support lines.]

Lemma 2. $B = \{ d \mid i_*: \mathcal{C}_1(A_d) \to \mathcal{C}_1(T^2) \text{ is not trivial} \}$ is an interval in $[0, \infty)$ containing 0, or else B contains only 0.

Proof. If $0 \leq d'' < d'$, then $A_{d''} \supset A_{d'}$. Hence if $d' \in B$, $\mathcal{C}_1(A_{d'}) \to \mathcal{C}_1(T^2)$ is nontrivial, so $d'' \in B$.

Lemma 3. If $0 < d \in B$, and $C_d = \{ (\theta, \theta') \in T^2 \mid \rho_\alpha(\theta, \theta') = d \}$, then $\mathcal{C}_1(C_d) \to \mathcal{C}_1(T^2)$ has for image the diagonal element $(1, 1)$.

Proof. Since $d \in B$, $\mathcal{C}_1(A_d) \to \mathcal{C}_1(T^2)$ is nontrivial. Since $d > 0$, $A_d \cap \Delta = \emptyset$. Since the nontrivial nondiagonal elements of $\mathcal{C}_1(T^2)$ have a nontrivial intersection with the diagonal element, the image of $\mathcal{C}_1(A_d)$ must be $(1, 1)$. Furthermore, since $\Delta \subset \text{Cl} (\widetilde{A}_d)$, the image of $\mathcal{C}_1(\text{Cl} (\widetilde{A}_d))$ in $\mathcal{C}_1(T^2)$ contains $(1, 1)$. Hence in the Mayer-Vietoris homology sequence

$$ \cdots \to \mathcal{C}_1(BdA_d) \overset{i}{\to} \mathcal{C}_1(A_d) + \mathcal{C}_1(\text{Cl}(\widetilde{A}_d)) \overset{j}{\to} \mathcal{C}_1(T^2) \to \cdots $$

if $\Gamma_1 \in \mathcal{C}_1(A_d)$ maps by inclusion into $(1, 1)$ and $\Delta_1 \in \mathcal{C}_1(A_d)$ maps by inclusion into $(1, 1)$, then $j(\Gamma_1 + \Delta_1) = 0$, so $\Gamma_1 + \Delta_1 = i \Gamma_1'$ for some $\Gamma_1' \in \mathcal{C}_1(BdA_d)$. Then the successive inclusions $\mathcal{C}_1(BdA_d) \to \mathcal{C}_1(C_d) \to \mathcal{C}_1(A_d) \to \mathcal{C}_1(T^2)$ take Γ_1' into $(1, 1)$.

Let $T: S^n \to S^n$ be the antipodal map, γ_1 a nonbounding T-invariant cycle (see [5] for definitions) of some T-invariant triangulation of S^n. Then it is easily seen that there is a $\gamma_1' T \sim \gamma_1$ with $|\gamma_1'|$ a simple closed curve, $|\gamma_1'| \subset |\gamma_1|$.

Lemma 4. There exists a map $\alpha: S^1 \to |\gamma_1'|$ such that $w(\alpha) = 2$.

Proof. Let $x, -x$ be antipodal points of $|\gamma_1'|$, β a 1:1 map of the arc $0 \leq \theta \leq \pi$ of S^1 onto one of the polygonal arcs of $|\gamma_1'|$ joining x to $-x$. Extend β to $\alpha: S^1 \to |\gamma_1'|$ by defining $\alpha(\theta) = \beta(\theta), \alpha(\theta + \pi) = T \circ \beta(\theta)$ for $0 \leq \theta \leq \pi$. $D = \{ (\theta, \theta + \pi) \in T^2 \mid \text{all } \theta \in S^1 \}$ is a "straight line" in T^2 parallel to the diagonal, so $\mathcal{C}_1(D) \to \mathcal{C}_1(T^2)$ is not trivial. Furthermore, $\rho_\alpha(\theta, \theta + \pi) = 2$ for all θ, so $D = A_2$, $w(\alpha) = 2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 5. Let \(X_d = \{ x \in S^n \mid \text{there exists } y \in S^n \text{ with } \rho(x, y) = d, f(x) = f(y) \} \). Then if \(0 \leq d \leq 2 \), and \(\gamma_1 T \sim 0 \), then \(\gamma_1 \cap X_d \neq \emptyset \).

Proof. Let \(\gamma'_i \) be as in Lemma 4, \(\alpha: S^1 \to \gamma'_i \) with \(w(\alpha) = 2 \). Then by Lemma 2 for \(0 < d \leq 2 \), \(d \in B \), hence by Lemma 3, the image of \(C_d \) in \(C_1(T^2) \) is the diagonal element. \(C_d \) contains a continuum \(C'_d \) such that the image of \(C_1(C'_d) \) in \(C_1(T^2) \) is the diagonal element, and thus \(p_1 C'_d = S^1 \). Therefore, by Lemma 1, there exists \((\theta, \theta') \in C_d \) such that \(f \circ \alpha(\theta) = f \circ \alpha(\theta') \), using \(g = f \circ \alpha \). Hence \(\alpha(\theta) \) and \(\alpha(\theta') \) are points of \(\gamma'_i \cap X_d \subset \gamma_i \cap X_d \).

Proof of Theorem. Let \(U \) be any open subcomplex of a triangulation \(K \) containing \(pX_d \) in \(P^n \). By Lemma 5, no nonbounding 1-cycle of \(K \) is carried by \(\bar{U} \). Hence, by the Pontrjagin Removing Theorem, \([1] \) there exists a 1-cocycle \(\gamma^0 \), noncobounding on \(K \) and zero on \(\bar{U} \). Hence, the dual \(n - 1 \) cycle \(\gamma_{n-1} \) is nonbounding in \(K \), and carried by the dual subdivision of \(U \). By the continuity of the Čech theory \([3] \), the theorem now follows.

Remarks. One may obtain as a corollary the following: Let \(f_1, \ldots, f_n \) be maps of \(P^n \to E^n \), \(d_1, \ldots, d_n \) numbers with \(0 \leq d_i \leq 1 \). Let \(P^n \) be metrized by \(S(x, y) = \rho(p^{-1}x, p^{-1}y) \). Then there exist points \(x_0, x_1, \ldots, x_n \in P^n \) such that \(f_i(x_0) = f_i(x_i) \) and \(S(x_0, x_i) = d_i \).

Notice that a considerable amount of information about \(X_d \) was not used in obtaining our theorem. While it was proved that every curve \(\alpha \) of width \(\geq d \) must intersect \(X_d \), we used only curves of width 2 for the theorem. To get stronger results, one may have to abandon homology methods.

Bibliography