1. Introduction. The background for this paper is provided by Klein's work presented in the Erlangerprogram [1], and more recent developments of these ideas as well as their application outside the field of geometry [2; 3; 4; 5; 6].

Klein deals with the Euclidean space A as a fundamental structure. Its group of automorphisms $G_0(A)$ consists of the similitudes. Let $G(A)$ denote any group arrived at by adjoining to $G_0(A)$ new transformations of the set A. The basic problems then are of the following type: Given an extension $G(A)$ of $G_0(A)$, find invariants of $G(A)$ which characterize it.

Analogous problems can be formulated in the theory of abstract groups [2]. Now the fundamental structure itself is an abstract group A. Its automorphism-group $G_0(A)$ may be extended to a group $G(A)$, by adjoining new transformations of the set A. The group-multiplication of A, the characterizing invariant of $G_0(A)$, is not invariant under $G(A)$. The basic problems, stated above for geometry, take the same form in group theory, namely, what are characterizing invariants for $G(A)$.

A study of this type has already been made in the case $G(A)$ is taken to be the holomorph $H(A)$, i.e., the group of transformations obtained by adjoining to $G_0(A)$ the translations of A [4]. The present paper deals with the case $G(A) = G_1(A)$, the group consisting of the automorphisms and anti-automorphisms of A. Characterizing invariants of $G_1(A)$ are investigated.

In a group A on a set A one can define two multiplications $p(x, y) = x \cdot y$ and $q(x, y) = y \cdot x$. The automorphism group $G_0(A)$ consists of the automorphisms of the operation p, while the anti-automorphisms are those transformations T of the set A which interchange p and q. It follows that the set $\{p, q\}$ is invariant under all transformations belonging to the group $G_1(A)$ consisting of the automorphisms and anti-automorphisms of A. Furthermore, this invariant characterizes $G_1(A)$, i.e., every transformation T of the set A which keeps the set $\{p, q\}$ invariant belongs to $G_1(A)$. However, there are simpler characterizing invariants for $G_1(A)$, namely relations whose arguments

Received by the editors September 13, 1955, and, in revised form, December 11, 1955.

1134
range over the set A. For example $G_1(\overline{A})$ clearly is the group of automorphisms of the 6-term relation β defined as follows:

$$\beta(x, y, z, u, v, w) : (xy = z \land uv = w) \lor (yx = z \land vu = w).$$

Theorem 1 shows that even a 3-term relation will serve to characterize $G_1(\overline{A})$.

Theorem 1. The automorphisms and anti-automorphisms of a group \overline{A} constitute the group of automorphisms of the relation

$$\alpha(x, y, z) : xy = z \lor yx = z$$

i.e., the relation α is a characterizing invariant for $G_1(\overline{A})$.

The significance of this theorem is that it shows how to replace the rather complex relation β by a simpler relation α which is a characterizing invariant for the same group of transformations. It is natural to ask whether this result can be further improved. The relation α is a disjunction of two equations. The question is whether there is a relation expressible in the form of a single equation, which characterizes the group $G_1(\overline{A})$ of automorphisms and anti-automorphisms. The answer is negative, it is possible to prove.

Theorem 2. There is no finite or infinite set of relations expressible as equations between words, which would constitute a system of invariants characterizing the group $G_1(\overline{A})$ of automorphisms and anti-automorphisms. I.e., there is a group \overline{A}_0 and a transformation T on \overline{A}_0 such that every equation between words which in every group \overline{A} is invariant under $G_1(\overline{A})$ is also invariant in \overline{A}_0 under T, and such that T is not a member of $G_1(\overline{A}_0)$.

In algebra one prefers to deal with operations rather than relations. An operation on the set A, which characterizes $G_1(\overline{A})$, is given in §3. However, such an operation is neither definable explicitly by a word, nor is it definable implicitly as a solution of an equation of group theory. This follows as a corollary to Theorem 2.

2. Proofs. Theorem 1 states: If \overline{A} is a group and T is a transformation of the set A having the property that for all $x, y \in A$, $T(x \cdot y)$ is either equal to $Tx \cdot Ty$ or equal to $Ty \cdot Tx$, and $T^{-1}(x \cdot y)$ is either equal to $T^{-1}x \cdot T^{-1}y$ or equal to $T^{-1}y \cdot T^{-1}x$, then T must be an automorphism or an anti-automorphism of \overline{A}. In this form the theorem was independently obtained by W. R. Scott [8]. As his proof appears in this journal, our proof of Theorem 1 will be omitted.

Let us define a semi-automorphism of a group \overline{A} to be a mapping which preserves e and the functions $Sx = x^{-1}$ and $s(x, y) = xyx$. Let
$G_1(\overline{A})$ and $G_2(\overline{A})$ denote respectively the group of automorphisms plus anti-automorphisms, and the group of semi-automorphisms. The proof of Theorem 2 now proceeds as follows: first a complete description of all equations invariant under G_1 in all groups \overline{A} is given. It then can be seen easily that, in the abelian case, all these equations are invariant also under G_2. The proof is completed by displaying abelian groups \overline{A}_0 for which $G_2(\overline{A}_0)$ is not contained in $G_1(\overline{A}_0)$.

An equation of group theory will be called reduced if it is either the equation $e = e$ or then is of the type $a_1a_2 \cdots a_n = e$, whereby every a_i is of the form x or x^{-1}, x being a variable, and none of the pairs a_ia_{i+1} and a_ia_n is of the form xx^{-1} or $x^{-1}x$. Clearly, to every equation $f = g$ one can find a reduced equation $h = e$, such that $(f = g) \leftrightarrow (h = e)$ holds in all groups. It follows that every relation expressible by an equation $f = g$ can also be expressed by a reduced equation $h = e$. In describing the equational invariants of G_1 and G_2 it therefore is sufficient to deal with reduced equations only. This procedure will be followed in the sequel. Furthermore, the following notations will be used: Let x be a variable, then $[x]$ stands for x^{-1} and $[x^{-1}]$ stands for x. Let w be a word of group theory, i.e., an expression $a_1a_2 \cdots a_n$, whereby every a_i is of the form x or x^{-1}. Then w^* stands for the word $a_n \cdots a_2a_1$, and $[w]$ stands for the word $[a_1][a_2] \cdots [a_n]$. The symbol \"\sim\" is used to denote syntactic identity of words.

L1: If $g = e$ and $h = e$ are reduced equations such that $(g = e) \leftrightarrow (h = e)$ is true in all groups, then h results by a cyclic permutation of the constituents of either g or $[g^*]$.

To prove this one best uses Gödel's completeness theorem for first order predicate calculus. It says that in L1 one can replace \"true in all groups\" by \"provable in first-order group theory.\" Although the validity of the resulting meta-group-theoretic statement is fairly obvious on intuitive grounds, its proof is rather lengthy and therefore it is omitted.

Next we define a reduced equation $g = e$ to be regular in case g^* results from g by a cyclic permutation, and to be regular in case $[g] = e$. The next step is to investigate the invariants under G_2 of regular
equations. For this purpose the structure of regular equations has
to be described. This is done in L4.

L3: Let g be a word of length n, and let P be the cyclic permuta-
tion of n objects through m places. If $Pg \approx g$, then there is a word w, such that $g \approx w w \cdots w$ and m is a multiple of the length l of w.

Proof. Let g be the word $a_1 \cdots a_n$. The equation

$$a_i \approx a_{i+n}, \quad \text{for all integers } i,$$

clearly defines a function $i \to a_i$ of the integers into the set $\{a_1, \cdots, a_n\}$, which is periodic with period n. Because $Pg \approx g$, it follows that the function $i \to a_i$ is also periodic with period m, i.e.,

$$a_i \approx a_{i+m}, \quad \text{for all integers } i.$$

Let l be the largest common divisor of n and m. Then, $l = pm + qm$ for some integers p and q. Therefore, by (1) and (2), the function $i \to a_i$ is also periodic with period l, i.e.,

$$a_i \approx a_{i+l}, \quad \text{for all integers } i.$$

Let w be the word $a_1 \cdots a_i$. Because l divides n, g is of the form $w w \cdots w$. Because l divides m, m is a multiple of the length l of w.

Q.E.D.

L4: If the equation $g = e$ is regular, then the word g must be of the
form $g_1 g_2$, whereby both g_1 and g_2 are symmetric words, i.e., $g_1 = g_1^*$ and $g_2 = g_2^*$.

If the equation $g = e$ is regular, then the word g must be of the
form $v[v]v[v] \cdots v[v]$, whereby v is some word.

Proof. Let $g = e$ be regular. Then there is a number i such that a
cyclic permutation of g through i places yields g^*. It may be assumed
that i is less or equal to half of the length of g, so that g is of the
form $a_1 \cdots a_i b_1 \cdots b_i$ whereby $i \leq j$. The cyclic permutation of g through i places then yields $b_1 \cdots b_i a_1 \cdots a_i$, while g^* is the word $b_i \cdots b_1 a_1 \cdots a_i$. Because these two words are identical it follows
that $b_1 \cdots b_i$ is identical with $b_i \cdots b_1$, and $a_1 \cdots a_i$ is identical
with $a_i \cdots a_i$. Therefore g is of the form $g_1 g_2$, whereby both g_1 and g_2
are symmetric.

Next let $g = e$ be regular. Then there is a number i such that the
cyclic permutation P through i places takes g into $[g]$, i.e., $Pg \approx [g]$.
It follows that $PPg \approx P[g] \approx [Pg] \approx [[g]] \approx g$, i.e., $PPg \approx g$. By L3,
there is a word w of length l, such that g is of the form $w \cdots w$ and
$2i$ is a multiple of l, say $2i = s \cdot l$. Suppose first that s is even. Then i
would be a multiple of l, and therefore, Pg would be identical to g.

Because Pg is identical with $[g]$, it would follow that g and $[g]$ are
identical, which is impossible. Consequently s must be odd, and therefore it follows from $2i = s \cdot l$, that l is even, and w is of the form w_1w_2, whereby both w_1 and w_2 are of length $l/2$. Thus, the situation is as follows:

$$g \approx aa,$$

whereby $a \approx w_1w_2w_1w_2 \cdots w_1w_2$,

$$Pg \approx bb,$$

whereby $b \approx w_2w_1w_2w_1 \cdots w_2w_1$,

$$[g] \approx cc,$$

whereby $c \approx [w_1][w_2][w_1][w_2] \cdots [w_1][w_2]$.

Because $Pg \approx [g]$ it follows that $w_2 \approx [w_1]$, and therefore

$$g \approx w_1[w_1]w_1[w_1] \cdots w_1[w_1].$$

Q.E.D.

L5: If the equation $g = e$ is regular, then in all groups \overline{A} it is invariant under $G_2(\overline{A})$.

If the equation $g = e$ is regular, then in all abelian groups \overline{A} it is invariant under $G_2(\overline{A})$.

Proof. Suppose $g = e$ is regular. Then by L4, $g = e$ must be of the form $g_1g_2 = e$, whereby g_1 and g_2 are both symmetric. It is easily seen that every symmetric word is provably equal to an expression composed from $s(x, y) = xyx$ and $Sx = x^{-1}$, furthermore, $g_1g_2 = e$ is provably equivalent to $g_1 = S(g_2)$. It follows that there are expressions E_1 and E_2 in e, S and s, such that $(g = e) \iff (E_1 = E_2)$ holds in all groups. Because E_1 and E_2 are defined from e, S and s, the equation $E_1 = E_2$ must be invariant under the automorphism group $G_2(\overline{A})$ of e, S and s. It follows that $g = e$ is invariant under $G_2(\overline{A})$.

Suppose the equation $g = e$ is regular. Then by L3 it must be of the form $v[v]v[v] \cdots v[v] = e$. In every abelian group \overline{A} this equation is identically satisfied, and therefore invariant under $G_2(\overline{A})$. Q.E.D.

L6: There are abelian groups \overline{A}_0 for which $G_2(\overline{A}_0)$ is not contained in $G_1(\overline{A}_0)$.

Proof. Let \overline{A}_0 be a Boolean group, i.e., a group which satisfies the equation $x^2 = e$ identically. In this group $Sx = x$ and $s(x, y) = y$. It follows that $G_2(\overline{A}_0)$ consists of all transformations of the set A_0 which keep e fixed. On the other hand, because \overline{A}_0 is abelian, $G_1(\overline{A}_0)$ consist of all automorphisms of \overline{A}_0. Clearly $G_2(\overline{A}_0)$ is not contained in $G_1(\overline{A}_0)$, when A_0 has more than two elements. (For other examples see Dinkines [7].) Q.E.D.

By L2 and L5, it follows that, for abelian groups \overline{A}, if an equation is invariant under $G_1(\overline{A})$, then it is also invariant under $G_2(\overline{A})$. Because of L6, this yields that the equations invariant under $G_1(\overline{A})$ cannot characterize $G_1(\overline{A})$. This concludes the proof of Theorem 2.
3. Remarks. Since by Theorem 1, α and β have the same group of automorphisms in any A, they may be said to be equivalent in Klein's sense [1]. This suggests that a stronger sort of equivalence may be established by finding a definition of β in terms of α. That this is possible will be shown elsewhere by use of the following stronger form of Theorem 1: If two groups $\langle A, \cdot \rangle$ and $\langle A, * \rangle$ have the same α, then they must either be identical or anti-groups of each other. From this it also follows that the α-theory is an abstraction ([4]; [5]) of group theory, and that every concept of group theory which is invariant under anti-automorphisms is definable in terms of α.

The notion of an anti-automorphism applies to any algebraic system $\overline{A} = \langle A, \cdot \rangle$ consisting of a set A and a binary operation $x \cdot y$. While the relation β will still be a characterizing invariant for the group $G_1(\overline{A})$ consisting of all automorphisms and anti-automorphisms of \overline{A}, this will in general not be the case for α. However, our proof for Theorem 1 as well as W. R. Scott's makes use of the associative-law and both cancellation-laws only. Therefore, if \overline{A} is a cancellation-semi-group, then α is a characterizing invariant for $G_1(\overline{A})$. The following example shows that cancellation-semi-groups still do not exhaust all systems $\langle A, \cdot \rangle$ for which Theorem 1 holds: Let A be any set and let $x \cdot y = x$. Then $\overline{A} = \langle A, \cdot \rangle$ violates one of the cancellation-laws, however, $G_1(\overline{A})$ and the group of automorphisms of α are identical, they both consist of all transformations of the set A.

In connection with Theorem 2 it should be noted that it is a statement about invariants which are "uniformally" defined for all groups (general invariants in the sense of Baer [2]). In particular groups it may well happen that the anti-automorphisms may be characterized by an equational relation. Thus, as it is shown by F. Dinkines [7], there are many groups in which the semi-automorphisms are exactly the automorphisms and anti-automorphisms. For these groups the equations $x = e$, $z = xyx$ clearly constitute a system of characterizing invariants for the group of automorphisms and anti-automorphisms.

As a corollary to Theorem 2 it follows that there is no word w in grouptheory, such that in every group \overline{A} the operation $w_\overline{A}$ defined by w is a characterizing invariant for $G_1(\overline{A})$. However, there are other ways of uniformly defining operations by the use of expressions in grouptheory. For example consider the function $f_\overline{A}(a, b, c)$ which takes the value c or e according to whether $\alpha(a, b, c)$ holds or does not hold in \overline{A}. One can recover the relation $\alpha(a, b, c)$ from f, $Sx = x^{-1}$ and e, by defining: $\alpha(a, b, c)$, if and only if, $(c \neq e \land f(a, b, c) = c) \lor (c = e \land S\alpha = b)$. It follows that (e, S, f) is a system of characterizing invariants for $G_1(\overline{A})$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 2 belongs into meta-group theory, i.e., it is a statement about a first order functional calculus $F[e, \cdot, -^1]$ with extralogical primitives e, \cdot, and $-^1$, and extralogical axioms corresponding to conventional group-axioms. The statement may become false if a different formalization of group theory is used, for example the rather non-conventional formalization $F [e, \cdot, -^1, f]$ with an additional primitive f and an additional axiom, $f(x, y, z) = n \leftrightarrow ((xy \equiv z \lor yx \equiv z) \land n = z) \lor (xy \not\equiv z \land yx \not\equiv z \land n = e)$.

Bibliography

1. F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen, Erlangen (1872), Verlag von Andreas Deichert.

University of Illinois and
University of Michigan