INVARIANTS OF THE ANTI-AUTOMORPHISMS OF A GROUP

J. RICHARD BUCHI AND JESSE B. WRIGHT

1. Introduction. The background for this paper is provided by Klein's work presented in the Erlangerprogram [1], and more recent developments of these ideas as well as their application outside the field of geometry [2; 3; 4; 5; 6].

Klein deals with the Euclidean space \mathcal{A} as a fundamental structure. Its group of automorphisms $G_0(\mathcal{A})$ consists of the similitudes. Let $G(\mathcal{A})$ denote any group arrived at by adjoining to $G_0(\mathcal{A})$ new transformations of the set \mathcal{A}. The basic problems then are of the following type: Given an extension $G(\mathcal{A})$ of $G_0(\mathcal{A})$, find invariants of $G(\mathcal{A})$ which characterize it.

Analogous problems can be formulated in the theory of abstract groups [2]. Now the fundamental structure itself is an abstract group \mathcal{A}. Its automorphism-group $G_0(\mathcal{A})$ may be extended to a group $G(\mathcal{A})$, by adjoining new transformations of the set \mathcal{A}. The group-multiplication of \mathcal{A}, the characterizing invariant of $G_0(\mathcal{A})$, is not invariant under $G(\mathcal{A})$. The basic problems, stated above for geometry, take the same form in group theory, namely, what are characterizing invariants for $G(\mathcal{A})$.

A study of this type has already been made in the case $G(\mathcal{A})$ is taken to be the holomorph $H(\mathcal{A})$, i.e., the group of transformations obtained by adjoining to $G_0(\mathcal{A})$ the translations of \mathcal{A} [4]. The present paper deals with the case $G(\mathcal{A}) = G_1(\mathcal{A})$, the group consisting of the automorphisms and anti-automorphisms of \mathcal{A}. Characterizing invariants of $G_1(\mathcal{A})$ are investigated.

In a group \mathcal{A} on a set \mathcal{A} one can define two multiplications $p(x, y) = x \cdot y$ and $q(x, y) = y \cdot x$. The automorphism group $G_0(\mathcal{A})$ consists of the automorphisms of the operation p, while the anti-automorphisms are those transformations T of the set \mathcal{A} which interchange p and q. It follows that the set $\{p, q\}$ is invariant under all transformations belonging to the group $G_1(\mathcal{A})$ consisting of the automorphisms and anti-automorphisms of \mathcal{A}. Furthermore, this invariant characterizes $G_1(\mathcal{A})$, i.e., every transformation T of the set \mathcal{A} which keeps the set $\{p, q\}$ invariant belongs to $G_1(\mathcal{A})$. However, there are simpler characterizing invariants for $G_1(\mathcal{A})$, namely relations whose arguments

Received by the editors September 13, 1955, and, in revised form, December 11, 1955.

1134
range over the set A. For example $G_1(\overline{A})$ clearly is the group of automorphisms of the 6-term relation β defined as follows:

$$\beta(x, y, z, u, v, w) : (xy = z \land uv = w) \lor (yx = z \land vu = w).$$

Theorem 1 shows that even a 3-term relation will serve to characterize $G_1(\overline{A})$.

Theorem 1. The automorphisms and anti-automorphisms of a group \overline{A} constitute the group of automorphisms of the relation

$$\alpha(x, y, z) : xy = z \lor yx = z$$

i.e., the relation α is a characterizing invariant for $G_1(\overline{A})$.

The significance of this theorem is that it shows how to replace the rather complex relation β by a simpler relation α which is a characterizing invariant for the same group of transformations. It is natural to ask whether this result can be further improved. The relation α is a disjunction of two equations. The question is whether there is a relation expressible in the form of a single equation, which characterizes the group $G_1(\overline{A})$ of automorphisms and anti-automorphisms. The answer is negative, it is possible to prove.

Theorem 2. There is no finite or infinite set of relations expressible as equations between words, which would constitute a system of invariants characterizing the group $G_1(\overline{A})$ of automorphisms and anti-automorphisms. I.e., there is a group \overline{A}_0 and a transformation T on \overline{A}_0 such that every equation between words which in every group \overline{A} is invariant under $G_1(\overline{A})$ is also invariant in \overline{A}_0 under T, and such that T is not a member of $G_1(\overline{A}_0)$.

In algebra one prefers to deal with operations rather than relations. An operation on the set A, which characterizes $G_1(\overline{A})$, is given in §3. However, such an operation is neither definable explicitly by a word, nor is it definable implicitly as a solution of an equation of group theory. This follows as a corollary to Theorem 2.

2. **Proofs.** Theorem 1 states: If \overline{A} is a group and T is a transformation of the set A having the property that for all $x, y \in A$, $T(x \cdot y)$ is either equal to $Tx \cdot Ty$ or equal to $Ty \cdot Tx$, and $T^{-1}(x \cdot y)$ is either equal to $T^{-1}x \cdot T^{-1}y$ or equal to $T^{-1}y \cdot T^{-1}x$, then T must be an automorphism or an anti-automorphism of \overline{A}. In this form the theorem was independently obtained by W. R. Scott [8]. As his proof appears in this journal, our proof of Theorem 1 will be omitted.

Let us define a semi-automorphism of a group \overline{A} to be a mapping which preserves e and the functions $Sx = x^{-1}$ and $s(x, y) = xyx$. Let
$G_1(\bar{A})$ and $G_2(\bar{A})$ denote respectively the group of automorphisms plus anti-automorphisms, and the group of semi-automorphisms. The proof of Theorem 2 now proceeds as follows: first a complete description of all equations invariant under G_1 in all groups \bar{A} is given. It then can be seen easily that, in the abelian case, all these equations are invariant also under G_2. The proof is completed by displaying abelian groups \bar{A}_0 for which $G_2(\bar{A}_0)$ is not contained in $G_1(\bar{A}_0)$.

An equation of grouptheory will be called reduced if it is either the equation $e = e$ or then is of the type $a_1a_2 \cdots a_n = e$, whereby every a_i is of the form x or x^{-1}, x being a variable, and none of the pairs a_ia_{i+1} and a_ia_n is of the form xx^{-1} or $x^{-1}x$. Clearly, to every equation $f = g$ one can find a reduced equation $h = e$, such that $(f = g) \leftrightarrow (h = e)$ holds in all groups. It follows that every relation expressible by an equation $f = g$ can also be expressed by a reduced equation $h = e$. In describing the equational invariants of G_1 and G_2 it therefore is sufficient to deal with reduced equations only. This procedure will be followed in the sequel. Furthermore, the following notations will be used: Let x be a variable, then $[x]$ stands for x^{-1} and $[x^{-1}]$ stands for x. Let w be a word of grouptheory, i.e., an expression $a_1a_2 \cdots a_n$, whereby every a_i is of the form x or x^{-1}. Then w^* stands for the word $a_n \cdots a_2a_1$, and $[w]$ stands for the word $[a_1][a_2] \cdots [a_n]$. The symbol "\sim" is used to denote syntactic identity of words.

L1: If $g = e$ and $h = e$ are reduced equations such that $(g = e) \leftrightarrow (h = e)$ is true in all groups, then h results by a cyclic permutation of the constituents of either g or $[g^*]$.

To prove this one best uses Gödel's completeness theorem for first order predicate calculus. It says that in L1 one can replace "true in all groups" by "provable in first-order group theory." Although the validity of the resulting meta-group-theoretic statement is fairly obvious on intuitive grounds, its proof is rather lengthy and therefore it is omitted.

Next we define a reduced equation $g = e$ to be regular in case g^* results from g by a cyclic permutation, and to be regular in case $[g]$ results from g by a cyclic permutation.

L2: If the reduced equation $g = e$ in all groups \bar{A} is invariant under $G_1(\bar{A})$, then it is either regular, or regular, or g is e.

Proof. Suppose $g = e$ is reduced and invariant under G_1 and g is not e. Then $g = e$ is invariant under $Sx = x^{-1}$, i.e., $(g = e) \leftrightarrow ([g] = e)$ holds in all groups. Therefore by L1, $[g]$ results from g or $[g^*]$ by cyclic permutation. Consequently g^* or $[g]$ results from g by cyclic permutation, i.e., g is regular. Q.E.D.

The next step is to investigate the invariants under G_2 of regular
equations. For this purpose the structure of regular equations has to be described. This is done in L4.

L3: Let \(g \) be a word of length \(n \), and let \(P \) be the cyclic permutation of \(n \) objects through \(m \) places. If \(Pg \approx g \), then there is a word \(w \), such that \(g \approx w w \cdots w \) and \(m \) is a multiple of the length \(l \) of \(w \).

Proof. Let \(g \) be the word \(a_1 \cdots a_n \). The equation

\[
(1) \quad a_i \approx a_{i+n}, \quad \text{for all integers } i,
\]

clearly defines a function \(i \rightarrow a_i \) of the integers into the set \(\{a_1, \ldots, a_n\} \), which is periodic with period \(n \). Because \(Pg \approx g \), it follows that the function \(i \rightarrow a_i \) is also periodic with period \(m \), i.e.,

\[
(2) \quad a_i \approx a_{i+m}, \quad \text{for all integers } i.
\]

Let \(l \) be the largest common divisor of \(n \) and \(m \). Then, \(l = pm + qn \) for some integers \(p \) and \(q \). Therefore, by (1) and (2), the function \(i \rightarrow a_i \) is also periodic with period \(l \), i.e.,

\[
(3) \quad a_i \approx a_{i+l}, \quad \text{for all integers } i.
\]

Let \(w \) be the word \(a_1 \cdots a_1 \). Because \(l \) divides \(n \), \(g \) is of the form \(w w \cdots w \). Because \(l \) divides \(m \), \(m \) is a multiple of the length \(l \) of \(w \).

Q.E.D.

L4: If the equation \(g = e \) is regular, then the word \(g \) must be of the form \(gig_2 \), whereby both \(g_1 \) and \(g_2 \) are symmetric words, i.e., \(g_1 = g_1^* \) and \(g_2 = g_2^* \).

If the equation \(g = e \) is regular, then the word \(g \) must be of the form \(v[v]v[v] \cdots v[v] \), whereby \(v \) is some word.

Proof. Let \(g = e \) be regular. Then there is a number \(i \) such that a cyclic permutation of \(g \) through \(i \) places yields \(g^* \). It may be assumed that \(i \) is less or equal to half of the length of \(g \), so that \(g \) is of the form \(a_1 \cdots a_i, b_1 \cdots b_i \) whereby \(i \leq j \). The cyclic permutation of \(g \) through \(i \) places then yields \(b_1 \cdots b_i a_1 \cdots a_j \), while \(g^* \) is the word \(b_i \cdots b_i a_j \cdots a_1 \). Because these two words are identical it follows that \(b_1 \cdots b_i \) is identical with \(b_i \cdots b_1 \), and \(a_1 \cdots a_j \) is identical with \(a_j \cdots a_1 \). Therefore \(g \) is of the form \(g_1g_2 \), whereby both \(g_1 \) and \(g_2 \) are symmetric.

Next let \(g = e \) be regular. Then there is a number \(i \) such that the cyclic permutation \(P \) through \(i \) places takes \(g \) into \([g] \), i.e., \(Pg \approx [g] \).

It follows that \(PPg \approx P[g] \approx [Pg] \approx [[g]] \approx g \), i.e., \(PPg \approx g \).

By L3, there is a word \(w \) of length \(l \), such that \(g \) is of the form \(w \cdots w \) and \(2i \) is a multiple of \(l \), say \(2i = s \cdot l \). Suppose first that \(s \) is even. Then \(i \) would be a multiple of \(l \), and therefore, \(Pg \) would be identical to \(g \).

Because \(Pg \) is identical with \([g]\), it would follow that \(g \) and \([g]\) are
identical, which is impossible. Consequently \(s \) must be odd, and therefore it follows from \(2i = s \cdot l \), that \(l \) is even, and \(w \) is of the form \(w_1w_2 \), whereby both \(w_1 \) and \(w_2 \) are of length \(l/2 \). Thus, the situation is as follows:

\[
g \simeq aa, \text{ whereby } a \simeq w_1w_2w_1w_2 \cdots w_1w_2,\\
Pg \simeq bb, \text{ whereby } b \simeq w_2w_1w_2w_1 \cdots w_2w_1,\\
\langle g \rangle \simeq cc, \text{ whereby } c \simeq [w_1][w_2][w_1][w_2] \cdots [w_1][w_2].
\]

Because \(Pg \simeq \langle g \rangle \) it follows that \(w_2 \simeq [w_1] \), and therefore

\[
g \simeq w_1[w_1][w_1] \cdots [w_1]. \quad \text{Q.E.D.}
\]

L.5: If the equation \(g = e \) is regular\(_1\), then in all groups \(\overline{A} \) it is invariant under \(G_2(\overline{A}) \).

If the equation \(g = e \) is regular\(_2\), then in all abelian groups \(\overline{A} \) it is invariant under \(G_2(\overline{A}) \).

Proof. Suppose \(g = e \) is regular\(_1\). Then by L.4, \(g = e \) must be of the form \(g_1g_2 = e \), whereby \(g_1 \) and \(g_2 \) are both symmetric. It is easily seen that every symmetric word is provably equal to an expression composed from \(s(x, y) = xyx \) and \(Sx = x^{-1} \), furthermore, \(g_1g_2 = e \) is provably equivalent to \(g_1 = S(g_2) \). It follows that there are expressions \(E_1 \) and \(E_2 \) in \(e \), \(S \) and \(s \), such that \((g = e) \iff (E_1 = E_2) \) holds in all groups. Because \(E_1 \) and \(E_2 \) are defined from \(e \), \(S \) and \(s \), the equation \(E_1 = E_2 \) must be invariant under the automorphism group \(G_2(\overline{A}) \) of \(e \), \(S \) and \(s \). It follows that \(g = e \) is invariant under \(G_2(\overline{A}) \).

Suppose the equation \(g = e \) is regular\(_2\). Then by L.3 it must be of the form \(v[v]v[v] \cdots v[v] = e \). In every abelian group \(\overline{A} \) this equation is identically satisfied, and therefore invariant under \(G_2(\overline{A}) \). Q.E.D.

L.6: There are abelian groups \(\overline{A}_0 \) for which \(G_2(\overline{A}_0) \) is not contained in \(G_1(\overline{A}_0) \).

Proof. Let \(\overline{A}_0 \) be a Boolean group, i.e., a group which satisfies the equation \(x^2 = e \) identically. In this group \(Sx = x \) and \(s(x, y) = y \). It follows that \(G_2(\overline{A}_0) \) consists of all transformations of the set \(A_0 \) which keep \(e \) fixed. On the other hand, because \(\overline{A}_0 \) is abelian, \(G_1(\overline{A}_0) \) consist of all automorphisms of \(A_0 \). Clearly \(G_2(\overline{A}_0) \) is not contained in \(G_1(\overline{A}_0) \), when \(A_0 \) has more than two elements. (For other examples see Dinkines [7].) Q.E.D.

By L.2 and L.5. it follows that, for abelian groups \(\overline{A} \), if an equation is invariant under \(G_1(\overline{A}) \), then it is also invariant under \(G_2(\overline{A}) \). Because of L.6, this yields that the equations invariant under \(G_1(\overline{A}) \) cannot characterize \(G_1(\overline{A}) \). This concludes the proof of Theorem 2.
3. Remarks. Since by Theorem 1, \(\alpha \) and \(\beta \) have the same group of automorphisms in any \(\overline{A} \), they may be said to be equivalent in Klein's sense [1]. This suggests that a stronger sort of equivalence may be established by finding a definition of \(\beta \) in terms of \(\alpha \). That this is possible will be shown elsewhere by use of the following stronger form of Theorem 1: If two groups \(\langle A, \cdot \rangle \) and \(\langle A, \ast \rangle \) have the same \(\alpha \), then they must either be identical or anti-groups of each other. From this it also follows that the \(\alpha \)-theory is an abstraction ([4]; [5]) of group theory, and that every concept of group theory which is invariant under anti-automorphisms is definable in terms of \(\alpha \).

The notion of an anti-automorphism applies to any algebraic system \(\overline{A} = \langle A, \cdot \rangle \) consisting of a set \(A \) and a binary operation \(x \cdot y \). While the relation \(\beta \) will still be a characterizing invariant for the group \(G_1(\overline{A}) \) consisting of all automorphisms and anti-automorphisms of \(\overline{A} \), this will in general not be the case for \(\alpha \). However, our proof for Theorem 1 as well as W. R. Scott's makes use of the associative-law and both cancellation-laws only. Therefore, if \(\overline{A} \) is a cancellation-semi-group, then \(\alpha \) is a characterizing invariant for \(G_1(\overline{A}) \). The following example shows that cancellation-semi-groups still do not exhaust all systems \(\langle A, \cdot \rangle \) for which Theorem 1 holds: Let \(A \) be any set and let \(x \cdot y = x \). Then \(\overline{A} = \langle A, \cdot \rangle \) violates one of the cancellation-laws, however, \(G_1(\overline{A}) \) and the group of automorphisms of \(\alpha \) are identical, they both consist of all transformations of the set \(A \).

In connection with Theorem 2 it should be noted that it is a statement about invariants which are "uniformally" defined for all groups (general invariants in the sense of Baer [2]). In particular groups it may well happen that the anti-automorphisms may be characterized by an equational relation. Thus, as it is shown by F. Dinkines [7], there are many groups in which the semi-automorphisms are exactly the automorphisms and anti-automorphisms. For these groups the equations \(x = e, z = xyx \) clearly constitute a system of characterizing invariants for the group of automorphisms and anti-automorphisms.

As a corollary to Theorem 2 it follows that there is no word \(w \) in group-theory, such that in every group \(\overline{A} \) the operation \(w_\overline{A} \) defined by \(w \) is a characterizing invariant for \(G_1(\overline{A}) \). However, there are other ways of uniformly defining operations by the use of expressions in group-theory. For example consider the function \(f_\overline{A}(a, b, c) \) which takes the value \(c \) or \(e \) according to whether \(\alpha(a, b, c) \) holds or does not hold in \(\overline{A} \). One can recover the relation \(\alpha(a, b, c) \) from \(f, Sx = x^{-1} \) and \(e \), by defining: \(\alpha(a, b, c) \), if and only if, \((c \neq e \land f(a, b, c) = c) \lor (c = e \land Sa = b) \). It follows that \((e, S, f) \) is a system of characterizing invariants for \(G_1(\overline{A}) \).
Theorem 2 belongs into meta-group theory, i.e., it is a statement about a first order functional calculus $F[e, \cdot, \cdot^{-1}]$ with extralogical primitives $e, \cdot,$ and $\cdot^{-1},$ and extralogical axioms corresponding to conventional group-axioms. The statement may become false if a different formalization of group theory is used, for example the rather non-conventional formalization $F[e, \cdot, \cdot^{-1}, f]$ with an additional primitive f and an additional axiom, $f(x, y, z) = n \leftrightarrow ((xy = z \lor yx = z) \land n = z) \lor (xy \neq z \land yx \neq z \land n = e)$.

Bibliography

1. F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen, Erlangen (1872), Verlag von Andreas Deichert.

University of Illinois and

University of Michigan