NONCOUNTABLE NORMALLY LOCALLY
FINITE DIVISION ALGEBRAS

IACOPO BARSOTTI

A (commutative) field F is regular (see [1] of the bibliography) if it
is not finite, and if in addition it is true that the direct (= Kronecker
= tensor) product of two normal (= central) division algebras, of
finite orders, over F is not a division algebra unless their orders are
relatively prime; algebraic number fields and p-adic fields are ex-
amples of regular fields. A division algebra A over a field F is normally
locally finite if any finite subset of A is contained in a normal (over F)
division sub-algebra of A of finite order; in [1], such algebras were
called "of type 1." A subisomorphism of an algebra A over F is an
algebra-isomorphism of A into A, and it is proper if it is not onto. If
A is a normally locally finite division algebra over the regular field F,
without a finite basis over F, a characteristic sub-algebra of A is any
normally locally finite division sub-algebra D of A, with countably
infinite basis over F, having the property that any normally locally
finite division sub-algebra of A, with finite or countable basis over F,
is isomorphic to a sub-algebra of D. It was proved in [1] that any A
of the previous type has a characteristic sub-algebra, unique but for
isomorphisms; it was also proved that there exists a normally locally
finite division algebra over the regular field F, with infinite non-
countable basis, and with a given characteristic sub-algebra D, if
and only if D admits proper subisomorphisms; [1] contains a rather
involved proof of the fact that any D admits proper subisomorphisms
if F is not countable, and thus establishes the existence of normally
locally finite division algebras, with infinite noncountable basis, over
any noncountable regular field; this seems to be the only known
example of such algebras. We shall present here a very simple proof
of the same result, and will, at the same time, dispense with the
condition of noncountability of F.

(1). Lemma. Let A, B, C be normal division algebras, of finite orders
>1, over the (certainly infinite) field F, and suppose $A \times B \times C$ also
to be a division algebra; let m be an element of $A \times B$ but not of A. Then
there exists a $d \in B \times C$, not zero, such that $d^{-1}md \in A \times B$.

In the previous statement, as in the rest of this paper, the identity

Received by the editors April 3, 1957.
elements of the direct factors of a direct product of algebras are assumed to be coincident.

Proof (being a modification, due to D. Zelinsky, of a proof by the author). Let c be an element of C, but not of F, and let b be an element of B such that $mb \neq bm$; such b exists because the commutator (= centralizer) of B in $A \times B$ is A, and $m \in A$. Set $x = bc \neq 0$, so that also $1 + x \neq 0$; if the lemma is false, we have $xy = mx$, $(1 + x)z = m(1 + x)$ for suitable elements y, z of $A \times B$; subtracting, we obtain $m = z + x(z - y)$. If $y = z$, then $m = z = y, xm = mx, bm = mb$, a contradiction; if $y \neq z$, then $bc = x = (m - z)(z - y)^{-1} \in A \times B$, also a contradiction, since $c \in F$, Q.E.D.

For the convenience of the reader, we repeat here a portion of the statement of (6) of [1]:

(2). Lemma. Let A be a normally locally finite division algebra, with countably infinite basis, over the field F; a necessary and sufficient condition in order that A admit a proper subisomorphism is that there exist a factorization

$$A = B_0 \times B_1 \times \cdots$$

of A as a direct product of normal division algebras of finite orders > 1 over F, an $m \in B_0$, and a sequence h_1, h_2, \cdots of elements of A, such that, after setting $A_i = B_0 \times B_1 \times \cdots \times B_i$, the following conditions be satisfied:

(a) $h_i \in A_i$;
(b) $h_{i+1} = h_i c_i$ for a $c_i \in B_i \times B_{i+1}$;
(c) there exists no $z_{i-1} \in A_{i-1}$ such that $h_i z_{i-1} = m z_i$.

We can now prove:

(3). Theorem. Let A be as in (2); then A admits a proper subisomorphism.

Proof. By (29) of [1], A_0 cannot be transformed into itself by every inner automorphism of A_1; hence there exist an $m \in A_0$, and an $h_1 \in A_1$, with $h_1 \neq 0$, such that $h_1^{-1} mh_1 \in A_0$. We shall now proceed to build the sequence $\{ h_i \}$ of (2) by induction: assume the h_1, \cdots, h_i to have been found; by (1) (after replacing A by A_{i-1}, B by B_i, C by B_{i+1}, m by $h_i^{-1} mh_i$), there exists a $c_i \in B_i \times B_{i+1}$, not zero, such that $c_i^{-1} (h_i^{-1} mh_i) c_i \in A_i$. Then $h_{i+1} = h_i c_i$ satisfies the conditions of (2), Q.E.D.

1 This is the little theorem with a distinguished career, first proved in [2], which later came to be known as the Cartan-Brauer-Hua theorem (see for instance [3, Chapter VII, §13]); the proof given in [1] is the first elementary proof for the finite case.
(4). Corollary. Let A be as in (2), and assume F to be regular; then there exists a normally locally finite division algebra over F, with infinite noncountable basis, having A as characteristic sub-algebra.

On the other hand, if F is not regular, the concept of characteristic sub-algebra loses meaning; however, from (3), and from a slight modification of the construction used to prove the sufficiency of (3) of [1], we still obtain:

(5). Corollary. Let F be a field such that there exists a normally locally finite division algebra A with countably infinite basis over F; then there exists a normally locally finite division algebra over F, with infinite noncountable basis, having A as a sub-algebra.

Remark. An examination of the proof of (3) of [1] discloses that all the normally locally finite division algebras, with infinite noncountable basis over F, whose existence has been established in this note, have a basis of cardinality \aleph_1; the existence of normally locally finite division algebras over F, with a basis of cardinality $>\aleph_1$, is still an open problem, at least when F is regular.

Bibliography

University of Pittsburgh