NOTE ON A PAPER OF DIEUDONNÉ

L. CARLITZ

In a recent paper [1], Dieudonné has proved the following theorem.

Let \(a_0, a_1, a_2, \cdots \) be an infinite sequence of rational numbers and consider the (formal) power series

\[
\exp \left(\sum_{m=0}^{\infty} a_m x^m \right) = \sum_{n=0}^{\infty} c_n x^n,
\]

where \(p \) is a fixed prime. Then a necessary and sufficient condition that all the coefficients \(c_n \) be \(p \)-adic integers is that for each \(i \geq 0 \) we have

\[
a_i = \frac{a_{i-1}}{p} + b_i \quad (a_{-1} = 0),
\]

where each \(b_i \) is a \(p \)-adic integer.

In this note we consider the following problem. Let \(a_1, a_2, a_3, \cdots \) be a sequence of rational numbers and define the (formal) power series

\[
(1) \quad \exp \left(\sum_{m=1}^{\infty} a_m x^m \right) = \sum_{n=0}^{\infty} c_n x^n.
\]

Then we prove the following

Theorem 1. A necessary and sufficient condition that all the coefficients \(c_n \) be rational integers is that for all \(k \geq 1 \) we have

\[
(2) \quad \sum_{rs=k} r a_r \mu(s) \equiv 0 \pmod{k},
\]

where \(\mu(s) \) is the Möbius function.

To prove the theorem we employ a device used by Schur [2] and credited to Jänichen. Let

\[
g(x) = \sum_{n=0}^{\infty} c_n x^n.
\]

Then we can recursively determine \(b_1, b_2, \cdots \) so that

\[
g(x) = \prod_{m=1}^{\infty} (1 - x^m)^{b_m}.
\]

Received by the editors June 3, 1957.
Moreover the b_m are all integral if and only if the c_n are all integral. Now from (1) and (3) it follows that

$$\sum_{k=1}^{\infty} a_k x^k = \log g(x) = - \sum_{m=1}^{\infty} b_m \sum_{r=1}^{\infty} \frac{x^{mr}}{r};$$

consequently

$$k a_k = - \sum_{m | k} m b_m.$$

But (4) is equivalent to

$$- b_k = \frac{1}{k} \sum_{rs=k} r a_r \mu(s).$$

As already noted, the c_n are all integral if and only if the b_k are all integral, that is, if and only if the right member of (5) is integral for all k. But this is the same as the condition (2). This evidently proves the theorem.

The theorem can be stated in a slightly more general way. Let P denote an arbitrary set of rational primes and let D denote the set of rational numbers whose denominators contain only the primes of P. Then we may state

Theorem 2. A necessary and sufficient condition that all the coefficients $c_n \in D$ is that for all $k \geq 1$

$$\left\{ \frac{1}{k} \sum_{rs=k} r a_r \mu(s) \right\} \subseteq D.$$

Dieudonné's theorem is obtained when P consists of all the primes except p and $a_m = 0$ except for $m = p^r$.

References
