ON A PROBLEM OF D. R. HUGHES

E. G. STRAUS AND G. SZEKERES

D. R. Hughes (Bull. Amer. Math. Soc. vol. 63 (1957) p. 209) has proposed the following problem:

Let \(G \) be a group and \(p \) a prime. Define \(H_p(G) \) to be the [normal] subgroup of \(G \) generated by all the elements of \(G \) which do not have order \(p \).

Is the following conjecture true: either \(H_p(G) = \{1\} \) or \(H_p(G) = G \) or \([G: H_p(G)] = p\)?

He remarks that the conjecture is true for \(p = 2 \).

In this note we prove Hughes' conjecture for \(p = 3 \).

We shall use the following notation: if \(h, g_1, \ldots, g_n \in G \) and \(a_1, \ldots, a_n \) are integers then

\[
h^{a_1g_1 + \cdots + a_ng_n} = g_1^{-1}h^{-1}g_1^{-1}h^{-1}g_2^{-1}h^{-1}g_2^{-1}h^{-1}g_n^{-1}h^{-1}g_n.
\]

Lemma 1. If \(h \in H_p, x \in H_p \) then

\[
h^{1+x+x^2+\cdots+x^{p-1}} = 1.
\]

Proof. Since \(x^{p-1} \in H_p \), all elements of \(H_p x^{p-1} \) have order \(p \). In particular

\[
1 = (hx^{p-1})^p = hx^{p-1} \cdot hx^{p-1} \cdots hx^{p-1} = h \cdot x^{-1}hx \cdot x^{-2}hx^2 \cdots x^{-(p-1)}hx^{p-1} = h^{1+x+\cdots+x^{p-1}}.
\]

Lemma 2. If \(h \in H_3 \) and \(xH_3 \neq yH_3 \) then \(h^x+y = h^y+z \).

Proof. By hypothesis \(z = x^{-1}y \in H_3 \). Hence by Lemma 1

\[
1 = h_1^{1+z+z^2} = h_1^{1+z^2+z}, \quad h_1 \in H_3
\]

Received by the editors July 5, 1957.
or $h_1^{x^2} = h_1^{x^2 + z}$. Setting $h_1 = h^{x^2}$ proves the lemma.

Theorem. If $[G: H_3] > 3$ then $H_3 = \{1\}$.

Proof. Since all elements of G/H_3 are of order 3, every finitely generated subgroup of G/H_3 is finite by Burnside's theorem. In particular, therefore, G/H_3 has an Abelian subgroup of order 9. Let such a subgroup be generated by xH_3, yH_3. We have

\[
3 = - (1 + x + x^2)y - y^2(1 + x + x^3) + (1 + y + y^2) \\
+ (1 + xy + y^2x) + (1 + x^2y + y^2x) = f(x, y).
\]

But according to Lemma 2 we have therefore $h^3 = h^{f(x, y)}$ for every $h \in H_3$, and by Lemma 1 this implies $h^3 = 1$. In other words H_3 contains only the identity.

University of California, Los Angeles and
University of Adelaide