Let K be a field with a finite number q of elements and let α be the mapping of $K[x]$ in itself that assigns

$$f^\alpha(x) = \sum_{i=0}^{n} f_i x^{q^i-1}$$

as image to

$$f(x) = \sum_{i=0}^{n} f_i x^i.$$

The order of a nonzero element a of a finite field is the smallest of the positive integers j for which $a^j = 1$. If $f(x)$ is irreducible over K, then all of its roots are of the same order, for given any two roots of f lying in a finite extension F of K there is always an automorphism of F mapping one on the other. We may therefore define the order of the irreducible polynomial f to be the order of any one of its roots. The purpose of this note is to establish the following generalization of the theorem of Gleason and Marsh.3

Theorem. Let f be an irreducible member of $K[x]$. Then the degree of every irreducible factor of f^α is equal to the order of f.

Proof. Let β be the mapping of $K[x]$ in itself such that $g^\beta(x) = xg^\alpha(x) = \sum_{i=0}^{n} g_i x^{q^i}$. Clearly β is linear over K; that is, if g and h are in $K[x]$ and a and b are in K then $(ag + bh)^\beta = ag^\beta + bh^\beta$.

Let $g \in K[x]$. Then $(xg(x))^\beta = \sum g_i x^{q^i+1} = \left(\sum g_i x^{q^i} \right)^q = (g^\beta(x))^q$. That is,

$$1. \quad (xg)^\beta = g^{\beta q}.$$

Let f, g and a be in $K[x]$ and suppose $g = af$. Then $g^\beta(x) = (\sum a_i f^i(x))^\beta = \sum a_i (x^i f(x))^\beta = \sum a_i f^\beta(x)^q$ by (1). Thus, $f^\beta | g^\beta$ and so $f^\alpha | g^\alpha$. This proves

$$2. \quad f | g \text{ implies } f^\alpha | g^\alpha.$$
Now let f be irreducible, let g be arbitrary and let h be a factor of f^a of positive degree. We shall show that

$$h | g^a \implies f | g.$$

Let $A = \{ b \in K[x] : h | b^a \}$. If $b \in A$ and $a \in K[x]$, $b^a | (ab)^a$ by (2) and so $ab \in A$. It follows easily that A is an ideal containing f but not 1 in $K[x]$. Hence, since f is irreducible and $K[x]$ is a principal ideal domain, $A = (f)$ and (3) is established.

Now let f be irreducible of order r and let d be the degree of an irreducible factor h of f^a. Then $f | 1 - x^r$ and it follows from (2) that $h | 1 - x^{q^d - 1}$. Hence a splitting field of h, which has q^d elements, may be regarded as a subfield of a splitting field of $1 - x^{q^d - 1}$, which has q^r elements, and so $d | r$. On the other hand, $h | 1 - x^{q^d - 1}$ implies $f | 1 - x^d$ by (3) and hence $r | d$. It follows now that $d = r$ and the proof of the theorem is complete.

Corollary (Gleason-Marsh). Let f be an irreducible polynomial of degree n over K. The order of f is $q^n - 1$ if and only if f^a is irreducible.

Massachusetts Institute of Technology