R. L. Moore's Axiom 1' and Metrization

F. Burton Jones

Let S be a Hausdorff space for which there exists a simple sequence G_1, G_2, \cdots of open coverings such that (1) for each n, $G_n \supseteq G_{n+1}$, and (2) if H and K are nonintersecting closed subsets of S one of which is compact, then for some n no element of G_n intersects both H and K. At the 1957 Summer Meeting of the Society the question arose in connection with Mr. Armentrout's paper, A study of certain plane-like spaces without the use of arcs, as to whether or not S when satisfying certain rather complicated axioms was metric. I remarked that there did exist such nonmetric spaces. This observation was incorrect.

Theorem. The space S is metric.

Proof. Let p be a point of an open set R. There exists a natural number n such that if $g, h \in G_n$, $p \in g$, and $g \cdot h \neq 0$, then $g + h \subseteq R$. For suppose, on the contrary, that for each natural number n, there exist $g_n, h_n \in G_n$, $p \in g_n$, $g_n \cdot h_n \neq 0$ and $(g_n + h_n) \cdot (S - R) \neq 0$; let p_n be a point of $g_n \cdot h_n$. Obviously p_1, p_2, \cdots converges to p. Let $H = R \cdot (p + p_1 + p_2 + \cdots)$ and let $K = S - R$. Both H and K are closed and H is compact. Furthermore, for each n some element of G_n intersects both H and K. This is a contradiction.

It now follows from Moore's metrization theorem [1] that S is metric.

References

The University of North Carolina and
The Institute for Advanced Study

Presented to the Society, November 30, 1957; received by the editors, November 9, 1957.

1 A National Science Foundation Senior Postdoctoral Fellow.
2 Cf., Moore's Axiom 1' in [2, p. 324].
3 Abstract number 797, Bull. Amer. Math. Soc. vol. 63 (1957) p. 403