THE GROUP OF ORDER PRESERVING AUTOMORPHISMS
OF AN ORDERED ABELIAN GROUP

PAUL CONRAD

In this note we shall use the terminology and notation from [2, pp. 516–517]. In particular, order will always mean linear order. Some answers are given to the question: When can the group \(\mathfrak{A} \) of \(o \)-automorphisms of an abelian \(o \)-group \(G \) be ordered? We prove that \(\mathfrak{A} \) can be ordered provided that the rank of \(G \) is well ordered and the \(o \)-automorphism group of each component of \(G \) is isomorphic to a subgroup of the positive rationals. Thus every torsion free abelian group \(G \) admits an ordering for which the corresponding \(\mathfrak{A} \) can be ordered. Our results provide examples of nonabelian \(o \)-groups, and they can be used to obtain information about the underlying group \(G \).

1. Representation of an automorphism group by a group of matrices. Whenever possible we shall represent automorphisms by matrices. This is a straightforward generalization of the classical case (for example, see Kurosh [3, p. 156]), and no proofs will be given. Let \(\Gamma \) be an ordered set, and for each \(\gamma \in \Gamma \), let \(D_{\gamma} \) be an abelian group. We use the same symbol 0 to denote the identity element of each of the \(D_{\gamma} \). Let \(E_{\gamma} \) be the ring of endomorphisms of \(D_{\gamma} \), and let \(H(D_{\alpha}, D_{\beta}) \), where \(\alpha, \beta \in \Gamma \) and \(\alpha \neq \beta \), be the group of homomorphisms of \(D_{\alpha} \) into \(D_{\beta} \). Finally let \(G \) be the restricted direct sum of the \(D_{\gamma} \), and let \(\Delta \) be the set of all square matrices \([\pi_{\alpha \beta}] \), where \(\alpha, \beta \in \Gamma \), \(\pi_{\alpha \alpha} \in E_{\alpha} \), and \(\pi_{\alpha \beta} \in H(D_{\alpha}, D_{\beta}) \) for \(\alpha \neq \beta \), that satisfy:

(*) For \(\alpha \) fixed and each \(d \in D_{\alpha} \), \(d \pi_{\alpha \beta} \neq 0 \) for at most a finite number of the \(\beta \).

If \((\cdots, d_{\alpha}, \cdots) \in G \) and \([\pi_{\alpha \beta}] \in \Delta \), then

\[
(\cdots, d_{\alpha}, \cdots)[\pi_{\alpha \beta}] = (\cdots, \sum_{\alpha \in \Gamma} d_{\alpha} \pi_{\alpha \beta}, \cdots) \in G.
\]

It is easy to verify that this mapping is an endomorphism of \(G \). Conversely if \(\pi \) is an endomorphism of \(G \), then \((0, \cdots, 0, a_{\alpha}, 0, \cdots, 0)\pi = (\cdots, b_{\beta}, \cdots)\) where at most a finite number of the \(b_{\beta} \) are non-zero. Define \(a_{\alpha} \pi_{\alpha \beta} = b_{\beta} \), then we have a mapping of \(\pi \) upon \([\pi_{\alpha \beta}] \in \Delta \).

This mapping is an isomorphism of the ring of all endomorphisms of \(G \) onto \(\Delta \). Suppose that each \(D_{\gamma} \) is an \(o \)-group, and define \((\cdots, d_{\gamma}, \cdots) \in G \) positive if it is not zero and the nonzero com-
ponent d_y with greatest subscript γ is positive. Then G is an abelian o-group, and for each $\gamma \in \Gamma$, $C_\gamma = \{ (\cdots, g_\alpha, \cdots) \in G : g_\alpha = 0 \text{ for all } \alpha > \gamma \}$ is a convex subgroup of G. Let \mathfrak{A} be the group of all o-automorphisms of G, and for each $\gamma \in \Gamma$, let \mathfrak{D}_γ be the group of all o-automorphisms of D_γ. Let $T = T(\Gamma, D_\gamma)$ be the multiplicative semigroup of all the triangular matrices $[\pi_{ab}] \in \Delta$ that satisfy:

(a) $\pi_{\gamma\gamma} \in \mathfrak{D}_\gamma$ for all $\gamma \in \Gamma$.

(b) If $\alpha, \beta \in \Gamma$, $\beta > \alpha$ and $d \in D_\alpha$, then $d\pi_{a\beta} = 0$.

$[\pi_{ab}] \in T$ corresponds to an o-isomorphism of G into itself, and $[\pi_{ab}]$ corresponds to an o-automorphism of G if and only if $[\pi_{ab}]$ is a unit in T. Let $U = U(\Gamma, D_\gamma)$ be the group of units of T.

Lemma 1. If each of the convex subgroups C_γ of G is invariant with respect to \mathfrak{A}, then \mathfrak{A} is isomorphic to U.

Proof. By the isomorphism defined in the preceding discussion, \mathfrak{A} is mapped onto a subgroup of the group of all matrices in Δ that have inverses in Δ. Let $\pi \in \mathfrak{A}$ and let $[\pi_{ab}]$ be the corresponding matrix. For each $\gamma \in \Gamma$, $C_\gamma [\pi_{ab}] = C_\gamma$. It follows that $[\pi_{ab}]$ satisfies (b). Then since π is an o-automorphism, $[\pi_{ab}]$ satisfies (a).

Corollary. If each D_γ is a subgroup of the reals (naturally ordered), and the only o-permutation of Γ is the identity permutation, then \mathfrak{A} is isomorphic to U.

For under these restrictions it is easy to verify that every convex subgroup of G is invariant with respect to \mathfrak{A}.

Remark. If each D_γ is the group of reals, then \mathfrak{A} is isomorphic to U if and only if the only o-permutation of Γ is the identity permutation.

A subgroup S of G is a c-subgroup if for every $\gamma \in \Gamma$ and $d \in D_\gamma$ there exists an element $(\cdots, g_\alpha, \cdots) \in S$ such that $g_\gamma = d$ and $g_\alpha = 0$ for all $\alpha > \gamma$.

Lemma 2. Suppose that each D_γ is a nonzero d-closed subgroup of the reals. Then $U = T$ if and only if Γ is well ordered.

Proof. Each $[\pi_{ab}] \in T$ induces an o-isomorphism of G onto a c-subgroup of G. If Γ is well ordered, then G has no proper c-subgroups [1, p. 8]. Thus $G[\pi_{ab}] = G$ for all $[\pi_{ab}] \in T$, hence $U = T$.

Conversely assume that Γ is not well ordered. Then we can find a set $\{h_{\gamma_i}\}_{i=1}^\infty$ of nonzero elements such that $h_{\gamma_i} \in D_{\gamma_i}$ and $\gamma_1 > \gamma_2 > \gamma_3 > \cdots$. Let $h_{\gamma_i}^*$ be the smallest d-closed subgroup of D_{γ_i} that contains h_{γ_i}, and let B be the restricted direct sum of the $h_{\gamma_i}^*$. Define $h_{\gamma_i}^* = h_{\gamma_{i+1}} + h_{\gamma_i}$. Since B is a vector space over the rationals
and the h_{γ_i} form a basis for B, there is a unique extension of π to an o-isomorphism σ of B into B. Note that $(0, \cdots, 0, h_{\gamma_i}, 0, \cdots, 0)$ does not belong to $B\sigma$. For each γ_i, let K_{γ_i} be a subgroup of D_{γ_i} such that $D_{\gamma_i} = h_{\gamma_i}^* \oplus K_{\gamma_i}$. This is possible since the $h_{\gamma_i}^*$ are d-closed. Let E be the restricted direct sum of the K_{γ_i} for $i = 1, 2, \cdots$ and the D_α for all $\alpha \neq \gamma_1, \gamma_2, \cdots$. Then $G = B \oplus E$. For each $g = b + e$ in G let $g\tau = b\sigma + e$. It is easy to verify that τ is an o-isomorphism of G onto a proper subgroup of G, and that the corresponding matrix $[\pi_{\alpha\beta}]$ belongs to $o T$. Thus $U \neq T$.

Corollary. If each D_{γ} is a subgroup of the reals and Γ is well ordered, then \mathcal{A} is isomorphic to U and $U = T$.

2. **The group \mathcal{B}.** For the rest of this paper G will denote an abelian o-group, and Γ will denote the set of all pairs of convex subgroups G_γ, G_α of G such that G_γ covers G_α.

Lemma 3. If G^* is the d-closure of G and π is an o-automorphism of G, then there exists a unique o-automorphism π^* of G^* such that $g\pi^* = g\pi$ for all $g \in G$. Moreover the mapping $\pi \to \pi^*$ is an isomorphism of the group \mathcal{A} of all o-automorphisms of G into the group \mathcal{A}^* of o-automorphisms of G^*. Thus \mathcal{A} can be ordered if \mathcal{A}^* can be ordered.

Proof. For each $g^* \in G^*$ there exists a positive integer n such that $ng^* \in G$. Let $g^*\pi^*$ be the solution of $nx = (ng^*)\pi$. The verification that $\pi^* \in \mathcal{A}^*$ and that the mapping $\pi \to \pi^*$ is an isomorphism is not difficult.

For the remainder of this section we shall assume that G is d-closed. Let $\mathcal{B} = \{\pi \in \mathcal{A}: (G_\gamma + g)\pi = G_\gamma + g$ for all $\gamma \in \Gamma$ and all $g \in G_\gamma\}$. That is, \mathcal{B} consists of all those o-automorphisms of G that induce the identity automorphism on each of the components G_γ/G_α of G. \mathcal{B} is a normal subgroup of \mathcal{A}. For let $\alpha \in \mathcal{A}$, $\beta \in \mathcal{B}$ and $a \in G_\gamma$. $G_\alpha \alpha$ and $G_\gamma \alpha$ are convex subgroups and $G_\alpha \alpha$ covers G_α. Therefore $(G_\gamma + a)\beta \alpha^{-1} = (G_\gamma + a\alpha)\beta \alpha^{-1} = (G_\alpha + a\alpha)\alpha^{-1} = G_\gamma + a$. Since G is d-closed, G_γ and G_α are d-closed for all $\gamma \in \Gamma$. Thus $G = G_\gamma \oplus D_\gamma$, where D_γ is a d-closed subgroup of G. Therefore D_γ is o-isomorphic to a subgroup of the reals. Let $\mathcal{B}_\gamma(\mathcal{B}_\gamma)$ denote the group of all o-automorphisms of G_γ that induce the identity automorphism on all components. By Lemma 1, \mathcal{B}_γ is isomorphic to the multiplicative group of all matrices of the form

$$[a] = \begin{bmatrix} a_{11} & \theta \\ a_{21} & 1 \end{bmatrix}.$$
where $a_{11} \in \mathfrak{B}_{\gamma}$ and $a_{21} \in H(D_{\gamma}, G_{\gamma})$. Here and for the rest of this note 1 will denote an identity automorphism and θ a zero homomorphism. It will be clear what group 1 refers to (D_{γ} in this case), and what group θ refers to ($H(G_{\gamma}, D_{\gamma})$ in this case). In order to show that an ordering of \mathfrak{B}_{γ} can be extended to an ordering of \mathfrak{B}^γ we need the following lemma.

Lemma 4. If A is an abelian o-group, then $H(G, A)$ can be ordered so that if $h \in H$ is positive and α is an o-automorphism of A, then $h \alpha$ is positive.

Proof. Since G is torsion free and d-closed, it is a vector space over the rationals \mathbb{Q}. Choose and well order a basis g_1, g_2, \cdots for G. Define $h \in H$ positive if $h \neq 0$ and $g_i h > 0$ in A, where g_i is the first basis element for which $g_i h \neq 0$.

Corollary. \mathfrak{B}_{γ} is isomorphic to a subgroup of \mathfrak{B}^γ and any ordering of \mathfrak{B}_{γ} can be extended to an ordering of \mathfrak{B}^γ.

Proof. Order $H(D_{\gamma}, G_{\gamma})$ so that if $h \in H$ is positive and $\pi \in \mathfrak{B}_{\gamma}$, then $h \pi$ is positive. Define $[a]$ positive if $a_{11} > 1$ or $a_{11} = 1$ and $a_{21} > \theta$. It is easy to verify that this definition orders \mathfrak{B}^γ.

Theorem 1. If Γ is well ordered, then \mathfrak{B} can be ordered.

Proof. G is isomorphic to the restricted direct sum of the d-closed subgroups D_{γ} of the reals, where $D_{\gamma} \cong G_{\gamma}/G_{\gamma}$ [1, pp. 19 and 8]. Thus by the corollary to Lemma 2, \mathfrak{A} is isomorphic to the group of matrices $T(\Gamma, D_{\gamma})$. Clearly $[\pi_{\alpha \beta}] \in T$ corresponds to an element of \mathfrak{B} if and only if $\pi_{\gamma \gamma} = 1$ for all $\gamma \in \Gamma$. $0 = G_1 \subset G_2 \subset G_3 = \cdots \subset G_{\omega} \subset G_{\omega} = \cdots$. Thus for each $\gamma \in \Gamma$, \mathfrak{B}_{γ} is isomorphic to the group of all matrices of the form

$$
\begin{bmatrix}
1 & & & \\
& a_{21} & 1 & \theta \\
& & & \\
& & & \\
& & a_{\gamma 1} & \cdots & 1 \\
& & & & \theta \\
& & & & \\
& & & & 1
\end{bmatrix}
$$

Therefore without loss of generality $1 = \mathfrak{B}_1 \subset \mathfrak{B}_2 \subset \mathfrak{B}_3 = \cdots \subset \mathfrak{B}_{\omega} \subset \mathfrak{B}_{\omega} = \cdots$. If $\gamma \in \Gamma$ has no immediate predecessor, then $\mathfrak{B}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{B}_{\alpha}$. Also $\mathfrak{B} = \bigcup_{\gamma \in \Gamma} \mathfrak{B}_{\gamma}$. It follows at once from the corollary to Lemma 4 that \mathfrak{B} can be ordered.
Note that the theorem remains true without the restriction that G is d-closed. For if G has well ordered rank (that is, Γ is well ordered), then so does the d-closure of G.

Corollary I. If A is an abelian o-group with well ordered rank, and \mathfrak{A}^* is the group of all o-automorphisms of A that induce the identity automorphism on each of the components of A, then \mathfrak{A}^* can be ordered.

Let π be a value preserving o-isomorphism of G into G. That is, $g \in G^\gamma \setminus G_\gamma$ if and only if $g \pi \in G^\gamma \setminus G_\gamma$. Define $(G_\gamma + g) \pi' = G_\gamma + g \pi$ for all $g \in G_\gamma$. Then π' is an o-isomorphism of G^γ / G_γ into G^γ / G_γ. $T(\Gamma, D_\gamma)$ is isomorphic to the semigroup of all value-preserving o-isomorphisms of G into G that induce an o-automorphism on each of the components G^γ / G_γ of G. In the proof of the theorem it was shown that $T = U$.

Corollary II. If Γ is well ordered, then every value preserving o-isomorphism of G into G that induces an o-automorphism on each of the components of G is an o-automorphism of G.

Remark. Corresponding to Lemma 2 we have the following: Every value preserving o-isomorphism of G into G is an o-automorphism if and only if Γ is well ordered and no G^γ / G_γ admits an o-isomorphism onto a proper subgroup of itself. It is not necessary to assume that G is d-closed, since both conditions imply that G is d-closed. The proof is a consequence of Lemma 2, and the embedding theorem [1, p. 19].

If Γ is well ordered, then by the corollary to Lemma 2, $\mathfrak{A}/\mathfrak{B}$ is isomorphic to the group of all diagonal matrices in $T(\Gamma, D_\gamma)$. The o-automorphism group of the subgroup D_γ of the reals is isomorphic to a subgroup of the positive reals, hence it has a natural order. Therefore $\mathfrak{A}/\mathfrak{B}$ can be ordered. Thus an ordering of \mathfrak{B} can be extended to an ordering of \mathfrak{A} so that \mathfrak{B} is a convex subgroup if and only if $\alpha^{-1}\beta\alpha$ is positive for $\alpha \in \mathfrak{A}$ and $\beta \in \mathfrak{B}$ whenever β is positive in \mathfrak{B} (Levi [4]). In §4 we show that \mathfrak{B} can be so ordered, provided that the components of G admit only rational o-automorphisms. In §3 we order \mathfrak{B} by the method we used to order \mathfrak{B}.

3. **The group \mathfrak{A}.** Throughout this section assume that G is a d-closed abelian o-group with well ordered rank. Let $\mathfrak{A}^*_\gamma(\Gamma)$ be the group of all o-automorphisms of $G^\gamma(\gamma)$. $G^\gamma = G_\gamma \oplus D_\gamma$. Thus \mathfrak{A}^*_γ is isomorphic to the multiplicative group \mathfrak{M} of all matrices of the form

$$[a] = \begin{bmatrix} a_{11} & \theta \\ a_{21} & a_{22} \end{bmatrix}$$

where $a_{11} \in \mathfrak{A}^*_\gamma$, $a_{21} \in H(D_\gamma, G_\gamma)$ and a_{22} is an o-automorphism of D_γ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In particular, \(\mathcal{A}_\gamma \) is isomorphic to a subgroup of \(\mathcal{A}_\gamma \). Suppose that \(\mathcal{A}_\gamma \) and \(H \) are ordered and define \([a]\) positive if \(a_{22} > 1 \) or \(a_{22} = 1 \) and \(a_{11} > 1 \) or \(a_{22} = 1, a_{11} = 1 \) and \(a_{21} > \theta \). Then it is easy to verify that for any non-zero matrix \(a \) in \(\mathbb{M} \), either \(a \) is positive or \(a^{-1} \) is positive. Also if \(a \) and \(b \) are positive matrices in \(\mathbb{M} \), then \(ab \) is positive. Finally suppose that \(a, b \in \mathbb{M} \) and \(b \) is positive.

\[
a^{-1}ba = \begin{bmatrix}
-1 & 0 & \cdots & 0 \\
0 & a_{11}^{-1}b_{11}a_{11} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{22}^{-1}(b_{21}a_{11} + b_{22}a_{21} - a_{21}a_{11}^{-1}b_{11}a_{11})
\end{bmatrix}.
\]

If \(b_{22} > 1 \) or \(b_{22} = 1 \) and \(b_{11} > 1 \), then \(a^{-1}ba \) is positive. Suppose that \(b_{22} = 1, b_{11} = 1 \) and \(b_{21} > \theta \). Then

\[
a^{-1}ba = \begin{bmatrix}
0 & \theta \\
\theta & 0
\end{bmatrix}.
\]

Thus if we wish to extend the order of \(\mathcal{A}_\gamma \) to an order of \(\mathcal{A}_\gamma \) we must order \(H(D_\gamma, G_\gamma) \) so that \(a^{-1}b_{21}a_{11} \) is positive. Now without loss of generality, \(D_\gamma \) is a \(d \)-closed subgroup of the reals. Hence the only \(o \)-automorphisms of \(D \) are multiplications by some positive real numbers. In particular, a multiplication by a positive rational is an \(o \)-automorphism, since \(D \) is \(d \)-closed.

Lemma 5. If the only \(o \)-automorphisms of \(D_\gamma \) are multiplications by positive rationals, then \(H(D_\gamma, G_\gamma) \) can be ordered so that if \(h \in H \) is positive, then \(\alpha h \beta \) is positive for all \(o \)-automorphisms \(\alpha \) and \(\beta \) of \(D_\gamma \) and \(G_\gamma \) respectively.

Proof. Choose and well order a basis \(d_1, d_2, \cdots \) for \(D \). Define \(h \in H \) positive if \(h \neq \theta \) and \(d_i h > 0 \), where \(d_i \) is the first basis element for which \(d_i h \neq 0 \). \(d_i \alpha h \beta = (rd_i) h \beta = (r(d_i h)) \beta \), where \(r \) is a positive rational and \(\alpha \) and \(\beta \) are \(o \)-automorphisms of \(D_\gamma \) and \(G_\gamma \). Thus \(d_i \alpha h \beta \) is positive if and only if \(d_i h \) is positive.

Theorem 2. If \(G \) is an abelian \(d \)-closed \(o \)-group with well ordered rank and each component \(G_\gamma / G_\gamma \) has its group of \(o \)-automorphisms isomorphic to the positive rationals, then \(\mathcal{A} \) can be ordered so that \(\mathcal{B} \) is a convex subgroup.

The proof is entirely similar to the proof of Theorem 1.

Corollary. Any torsion free abelian group can be ordered in such a way that the resulting group of \(o \)-automorphisms can also be ordered.

Proof. Let \(A \) be a torsion free abelian group. Choose and well order a basis \(a_1, a_2, \cdots \) for the \(d \)-closure \(A^* \) of \(A \). Then \(A^* \)
Define $a = \cdots + r_i a_i + \cdots$ positive if $a \neq 0$ and the nonzero coefficient r_i with greatest subscript is positive. Then A^* satisfies the hypotheses of the theorem. Hence the group of σ-automorphisms \mathfrak{A}^* of A^* can be ordered, and the group \mathfrak{A} of σ-automorphisms of A is isomorphic to a subgroup of \mathfrak{A}^*.

Remark. Note that \mathfrak{A}^* is isomorphic to the group K of all row finite triangular matrices $[\pi_{a\beta}]$, where $\alpha, \beta \in \Gamma$ the rank of A^*, π_{aa} is a positive rational, $\pi_{a\beta}$ is a rational, and $\pi_{a\beta} = 0$ for $\alpha < \beta$. Then K can be ordered. In fact, the following definition orders K. $[\pi_{a\beta}]$ is positive if (a) there exists an $\alpha \in \Gamma$ such that $\pi_{aa} > 1$ and $\pi_{a\beta} = 1$ for all $\beta < \alpha$, or (b) $\pi_{aa} = 1$ for all $\alpha \in \Gamma$ and there exist $\alpha, \beta \in \Gamma$ such that $\pi_{a\beta} > \theta$, all elements above $\pi_{a\beta}$ in the diagonal containing $\pi_{a\beta}$ and parallel to the main diagonal are zero, and all elements in the diagonals parallel to but distinct from the main diagonal and above the diagonal containing $\pi_{a\beta}$ are zero.

4. A generalization of Theorem 2. Our proof of Theorem 2 does not permit the dropping of the hypothesis that G is d-closed. For example, if one of the components of G is isomorphic to $3 \oplus 3^{2^{1/2}}$, where 3 is the group of integers, then the corresponding components of the d-closure of G is isomorphic to $\mathfrak{N} \oplus \mathfrak{N}^{2^{1/2}}$. The σ-automorphism group of $\mathfrak{N} \oplus \mathfrak{N}^{2^{1/2}}$ is isomorphic to the group of all positive elements of $\mathfrak{N} \oplus \mathfrak{N}^{2^{1/2}}$.

Theorem 3. If G is an abelian σ-group with well ordered rank, and each component G^γ/G^γ has its group of σ-automorphisms isomorphic to a subgroup of the positive rationals, then \mathfrak{A} can be ordered.

Proof. Well order \prec the elements of G so that if $a, b \in G$ and $V(a) < V(b)$, then $a \prec b$, where $V(a)$ is the value of a with respect to the given order of G. That is,

$$0 \prec g_{11} \prec g_{12} \prec \cdots \prec g_{21} \prec g_{22} \prec \cdots \prec g_{\omega 1} \prec g_{\omega 2} \prec \cdots \cdots \cdots$$

For each $\pi \neq 1$ in \mathfrak{A} there exists a least element g in the well ordering \prec such that $g\pi \neq g$. Denote this least element by $L(\pi)$, and define π positive if $L(\pi)\pi > L(\pi)$. If $\pi \neq 1$ and π is not positive, then $L(\pi^{-1}) = L(\pi)$ and $L(\pi)\pi < L(\pi)$. Thus $L(\pi^{-1}) = L(\pi) < L(\pi)\pi^{-1} = L(\pi^{-1})\pi^{-1}$, hence π^{-1} is positive. Let α and β be positive elements of \mathfrak{A}. If $L(\alpha) = L(\beta)$ or $L(\alpha) \prec L(\beta)$ and $g \prec L(\alpha)$, then $g\alpha\beta = g\beta = g$ and $L(\alpha)\alpha\beta > L(\alpha)\beta \geq L(\alpha)$. If $L(\beta) \prec L(\alpha)$ and $g \prec L(\beta)$, then $g\alpha\beta = g\beta = g$ and $L(\beta)\alpha\beta = L(\beta)\beta > L(\beta)$. Therefore $\alpha\beta$ is positive.

Finally suppose that $\alpha, \beta \in \mathfrak{A}$ and that β is positive. Let $g \in G^\gamma \setminus G^\gamma$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Then \(g\alpha \equiv (m/n)g \mod G_\gamma \), hence \(n(g\alpha) = mg + d \) where \(m \) and \(n \) are positive integers and \(d \in G_\gamma \). In particular, \(d \geq g \). If \(g \geq L(\beta) \), then
\[
 n(g\alpha\beta^{-1}) = (mg + d)\beta^{-1} = (mg + d)\alpha^{-1} = ng, \quad \text{hence } g\alpha\beta^{-1} = g.
\]
If \(g = L(\beta) \), then
\[
 n(L(\beta)\alpha\beta^{-1}) = (mL(\beta) + d)\beta^{-1} = (mL(\beta)\beta + d)\alpha^{-1} > (mL(\beta) + d)\alpha^{-1} = nL(\beta), \quad \text{hence } L(\beta)\alpha\beta^{-1} > L(\beta).
\]
Therefore \(\alpha\beta^{-1} \) is positive and \(\mathcal{A} \) is ordered.

Note that for this ordering of \(\mathcal{A} \), \(\mathcal{B} \) is not a convex subgroup. However, the above definition does order \(\mathcal{B} \) for any abelian \(\sigma \)-group with well ordered rank. Thus we have a second proof of Theorem 1. Moreover, this ordering of \(\mathcal{B} \) can be extended to an ordering of \(\mathfrak{A} \) provided that each component of \(G \) has its group of \(\sigma \)-automorphisms isomorphic to a subgroup of the positive rationals. For if \(\alpha \in \mathfrak{A}, \beta \in \mathfrak{B} \) and \(\beta \) is positive, then the above proof shows that \(\alpha\beta\alpha^{-1} \) is positive. Thus we have a proof of Theorem 2 that does not use the hypothesis that \(G \) is \(d \)-closed.

Bibliography

Tulane University