COMMUTATORS IN DIVISION RINGS

BRUNO HARRIS

1. Introduction. A theorem of Wedderburn [4] states: if every element of a finite dimensional associative algebra is a sum of nilpotent elements, then the algebra is nil. In [1], Kaplansky asked whether this theorem could be generalized to rings with minimum condition, and mentioned that an equivalent question is:

Does there exist a division ring D with \(D = [D, D] \)? (Here \([D, D]\) denotes the subgroup of the additive group of \(D \) generated by all additive commutators \([x, y] = xy - yx\).) An affirmative answer to the second question is equivalent to a negative answer to the first. In the finite dimensional case, the trace function shows that the second question has a negative answer.

In this paper we give an example of a division ring \(D \) with \(D = [D, D] \). In fact every element of \(D \) is itself a commutator, and \(D_n \) (the \(n \times n \) matrix ring with coefficients in \(D \)) has the same property.

2. Construction of the division ring. Ore has shown that a non-commutative integral domain in which every two nonzero elements have a nonzero common right multiple can be imbedded in a division ring of (right) fractions [2]. He has also shown that the integral domain of differential polynomials in one variable with coefficients in a division ring has the common right multiple property. We show that a certain ring of differential polynomials in an infinite number of variables also has the common right multiple property, and that the division ring of fraction satisfies \(D = [D, D] \) and even the stronger properties mentioned above.

Let \(F \) be a field, \(\{x_i\}_{i \in I} \) and \(\{y_i\}_{i \in I} \) two infinite sets of variables with the same ordered index set \(I \), and \(P = F[\{x_i\}, \{y_i\}] \) the set of formal polynomial expressions

\[
\sum a_{n(i_1)} \cdots a_{n(i_k)} m(j_1) \cdots m(j_l) x_{i_1}^{n(i_1)} \cdots x_{i_k}^{n(i_k)} y_{j_1}^{m(j_1)} \cdots y_{j_l}^{m(j_l)}
\]

where \(i_1 < \cdots < i_k, j_1 < \cdots < j_l \) are in \(I \), \(a \cdots \) are in \(F \), and only a finite number of terms occur in the sum. Define addition of polynomials the usual way, and multiplication by \([x_i, y_j] = 0 = [y_i, y_j] \), \([x_i, a] = 0 = [y_i, a] \) for \(a \in F \), \([x_i, y_i] = 1 \), \([x_i, y_j] = 0 \) for \(i \neq j \).

We show \(P \) has the common right multiple property by a method due to Tamari [3]:

Received by the editors February 17, 1958.
For \(p \in P \), let \(\deg (p) \) denote the total degree of \(p \) in the \(x_i \) and \(y_i \); then \(\deg (pq) = \deg p + \deg q \). Let \(p, q \) be nonzero polynomials, each of degree \(< l \). The problem of finding a common nonzero right multiple \(t = pr = qs \) of degree \(l \) and such that \(r \) and \(s \) each contain only those variables that occur in \(p \) or in \(q \) is the same as the problem of solving a finite number of linear homogeneous equations in a finite number of unknowns: the coefficients of \(r \) and \(s \) are the unknowns, and each term of \(t = pr = qs \) gives an equation. If \(m \) is the larger of \(\deg p, \deg q \) and \(v \) is the number of variables that occur in \(p \) or in \(q \) then the number of equations is the same as the number of distinct monomials of degree \(\leq l \) in \(v \) variables, i.e. \(C_{v+l,v} \), and the number of terms in each of \(r, s \) is \(\geq C_{v+1-m,v} \). Thus we have \(C_{v+l,v} \) equations in at least \(2C_{v+1-m,v} \) unknowns. If \(l \geq m/(1 - 2^{-1/v}) \), there are more unknowns than equations and a nonzero solution exists.

Let \(D \) be the division ring of fractions \(p/q = pq^{-1}, \ p, q \in P \). If \(d = pq^{-1} \in D \), each of \(p, q \) contains only a finite number of the variables \(y_i \), and so, for some index \(n \), \(y_n \) does not occur in \(p \) or in \(q \). Then \([x_n, p] = 0 = [x_n, q] \) and \([x_n, d] = 0 \), \([x_n, y_n d] = [x_n, y_n] d = d \). Similarly, if \(d_1, \ldots, d_r \) are a finite number of elements of \(D \), then \(y_n \) does not occur in any of the \(d_j \) for some \(n \), and so \([x_n, y_n d_j] = d_j, j = 1, \ldots, r \). In particular if \((d_{ij})\) is an \(m \times m \) matrix over \(D \), we can find \(n \) such that \([x_n, y_n d_{ij}] = d_{ij} \), for all \(i, j \). Let \(c_{ij} = y_n d_{ij} \) and let \((x_n) \) be the matrix \(x_n I, I \) the identity matrix; then \((x_n), (c_{ij}) = (d_{ij}) \).

3. Commutators and nilpotent matrices. We owe the first proposition and its proof to Professor Kaplansky, and the rest of the section is an amplification of his remarks in [1].

Proposition 1. Let \(R \) be any ring, \(R_n \) the \(n \times n \) matrix ring over \(R \), \((n \geq 2)\). If \(A \in R_n \) and trace of \(A \in [R, R] \), then \(A \) is a sum of nilpotent elements. In particular, if \(A \in [R_n, R_n] \) then \(A \) is a sum of nilpotent elements.

Proof. Any matrix is the sum of a diagonal matrix (i.e. one with zeros off the main diagonal) and two nilpotent matrices, so that for our purposes only the diagonal elements matter. The following \(2 \times 2 \) matrices are nilpotent:

\[
\begin{pmatrix}
ab & a \\
-ba & -ba
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
-ba & ba \\
ba & ba
\end{pmatrix},
\]

also \(\begin{pmatrix}
-d & -d \\
d & d
\end{pmatrix} \); thus

\[
\begin{pmatrix}
\begin{bmatrix}
ab
\end{bmatrix} & \ast \\
\ast & 0
\end{pmatrix}
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
is a sum of nilpotent matrices.

Now let $A = (a_{ij}) \in R_n$, and $\sum_{i} a_{ii} = c \in [R, R]$, so $a_{11} = c - (a_{22} + \cdots + a_{nn})$. Let xe_{ij} denote the matrix with x in the i, j position and zeros elsewhere. Using the above 2×2 matrices, we see that ce_{11} and $-a_{ii}e_{11} + a_{ii}e_{ii}, i \geq 2$, are sums of nilpotent matrices; therefore this also holds for $a_{11}e_{11} + \cdots + a_{nn}e_{nn}$, and finally for A. If $A \in [R_n, R_n]$, then trace of $A \in [R, R]$.

Proposition 2. Let D be any division ring, A an element of D_n, $n \geq 2$. The following conditions are equivalent:

(a) $A \in [D_n, D_n]$,

(b) trace of $A \in [D, D]$,

(c) A is a sum of nilpotent elements.

Proof. We have already shown $a \rightarrow b$, $b \rightarrow c$.

Define a “trace modulo commutators,” $\text{tr} (A)$, as the coset of the ordinary trace of A in the factor group of the additive group of D modulo $[D, D]$. Then $\text{tr}(A+B) = \text{tr}(A) + \text{tr}(B)$, and $\text{tr}(AB) = \text{tr} (BA)$. Now let A be nilpotent: then there exists a nonsingular B such that BAB^{-1} is in Jordan canonical form, i.e. BAB^{-1} is a sum of matrices of the form $n_{k,l} = e_{k+1,k} + e_{k+2,k+1} + \cdots + e_{l+1,l}, 1 \leq k \leq l \leq n - 1$. Finally, $[\sum_{i} (i+1-k)e_{i,i}, n_{k,l}] = n_{k,l}$; thus $n_{k,l}$ and also A are in $[R_n, R_n]$. This shows (c) \rightarrow (a).

Corollary. If D is a division ring such that $D = [D, D]$, then every element of D_n, $n \geq 2$, is a sum of nilpotent elements.

Bibliography

Northwestern University