
Tulane University

SIMPLE NODAL NONCOMMUTATIVE JORDAN ALGEBRAS

LOUIS A. KOKORIS

1. **Introduction.** Nodal algebras were defined by R. D. Schafer [4] and have also been studied by the author [2; 3]. A noncommutative Jordan algebra is an algebra \mathfrak{A} over a field \mathbb{F} satisfying (1) the flexible law $(xy)x=x(yx)$ and (2) the condition that \mathfrak{A}^+ is a Jordan algebra. That is, \mathfrak{A}^+ satisfies the identity $(x^2y)\cdot x=x^2\cdot (y\cdot x)$ where we have used the dot to indicate the product of \mathfrak{A}^+. The algebra \mathfrak{A}^+ is defined to be the same vector space as \mathfrak{A} but with product $x\cdot y=(xy+yx)/2$ where xy and yx are products in \mathfrak{A}. Then \mathfrak{A} is called nodal if it is finite dimensional, if \mathfrak{A} has identity element 1, if \mathfrak{A} can be written as a vector space direct sum $\mathfrak{A}=\mathfrak{N}+\mathfrak{I}$ where \mathfrak{N} is the subspace of nilpotent elements of \mathfrak{A}, and if \mathfrak{I} is not a subalgebra of \mathfrak{A}.

Every known nodal algebra \mathfrak{A} has the property that \mathfrak{A}^+ is an associative algebra. The flexible algebras with \mathfrak{A}^+ associative have been described in [3]. In this paper we shall prove the following theorem.

Theorem 1. Let \mathfrak{A} be a simple nodal noncommutative Jordan algebra of characteristic $\neq 2$. Then \mathfrak{A}^+ is associative.

Define \mathfrak{B} to be the subspace of \mathfrak{A} generated by all the associators in \mathfrak{A}^+. That is, \mathfrak{B} is generated by elements of the form $(x\cdot y)\cdot z-x\cdot (y\cdot z)$ with x, y, z in \mathfrak{A}. The proof of the theorem will be made by showing that the ideal \mathfrak{C} of \mathfrak{A} generated by \mathfrak{B} is not all of \mathfrak{A} and since \mathfrak{A} is simple it will follow that $\mathfrak{C}=0$ and $\mathfrak{B}=0$. This is the desired result.

The original proof was not valid when the characteristic is 3. The author thanks Professor R. D. Schafer for suggesting a modification.

Presented to the Society, January 28, 1958; received by the editors January 13, 1958.
which makes the proof simpler and also valid when the characteristic is 3.

2. The proof. Let \(x_1, x_2, x_3, \) and \(y \) be any elements of \(\mathcal{A} \). Since \(\mathcal{A} \) is nodal we have:

\[
x_iy = \lambda_i x_i + z_i.
\]

The proof will depend on relation (8) of Schafer’s paper [4] which is

\[
(x_1 \cdot x_2)y = \lambda_1 x_2 + \lambda_2 x_1 + x_1 \cdot z_2 + x_2 \cdot z_1
\]

\[
\quad - (x_1 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1 + (x_1 \cdot x_2) \cdot y.
\]

In the proof it will also be necessary to use the fact that \(\mathcal{A}^+ \) is a subalgebra of \(\mathcal{A}^+ [1] \).

By (2) \((x_1 \cdot x_2) y \) is in \(\mathcal{A} \) and it follows from (2) that \([(x_1 \cdot x_2) \cdot x_3] y = \lambda_3 x_1 \cdot x_2 + (x_1 \cdot x_2) \cdot z_3 + x_3 \cdot [\lambda_3 x_2 + \lambda_2 x_1 + x_1 \cdot z_2 + x_2 \cdot z_1 - (x_1 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1 + (x_1 \cdot x_2) \cdot y] - [(x_1 \cdot x_2) \cdot y] \cdot x_3 - (x_3 \cdot y) \cdot (x_1 \cdot x_2) + [(x_1 \cdot x_2) \cdot x_3] \cdot y.
\]

Without bothering to simplify interchange subscripts 1 and 3 to get

\[
[x_1 \cdot (x_2 \cdot x_3)] y = \lambda_1 x_3 \cdot x_2 + (x_3 \cdot x_2) \cdot z_1 + x_1 \cdot [\lambda_3 x_2 + \lambda_2 x_1 + x_1 \cdot z_2 + x_2 \cdot z_3 - (x_3 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1 + (x_2 \cdot x_3) \cdot y] - [(x_2 \cdot x_3) \cdot y] \cdot x_1 - (x_1 \cdot y) \cdot (x_3 \cdot x_2) + [(x_3 \cdot x_2) \cdot x_1] \cdot y.
\]

Using the notation \((a, b, c) = (a \cdot b) \cdot c - a \cdot (b \cdot c) \) for the associator of \(a, b, c \) we have, upon subtracting the second relation from the first, \((x_1, x_2, x_3) y = (x_1, x_2, z_3) + (x_1, z_2, x_3) + (z_1, x_2, x_3) - (x_1 \cdot y, x_2, x_3) - (x_1, x_2 \cdot y, x_3) + (x_3 \cdot y, x_2, x_1) + (x_1, x_2, x_3) \cdot y.
\]

Now define the set \(\mathcal{B} \) to be the subspace of \(\mathcal{A} \) generated by the associators \((a, b, c) \) with \(a, b, c \) in \(\mathcal{A} \) and using the product of \(\mathcal{A}^+ \). We have proved the following lemma.

Lemma 1. Let \(\mathcal{A} \) be a nodal noncommutative Jordan algebra whose characteristic is not 2. Then \(\mathcal{A} \mathcal{N} \subseteq \mathcal{B} + \mathcal{B} \cdot \mathcal{N} \). Also \(\mathcal{N} \mathcal{B} \subseteq \mathcal{B} + \mathcal{B} \cdot \mathcal{N} \).

The last statement follows from the fact that if \(b \) is in \(\mathcal{B} \), \(n \) in \(\mathcal{N} \), then \(nb = 2b \cdot n - bn \).

Let \(\mathcal{C}_0 = \mathcal{B} \), \(\mathcal{C}_1 = \mathcal{B} + \mathcal{B} \cdot \mathcal{N} = \mathcal{C}_0 + \mathcal{C}_0 \cdot \mathcal{N} \), and in general \(\mathcal{C}_{i+1} = \mathcal{C}_i + \mathcal{C}_i \cdot \mathcal{N} \). Equivalently, \(\mathcal{C}_{i+1} = \mathcal{C}_i + \mathcal{B} (R_{\mathcal{A}}^+)^i + 1 \).

Lemma 2. The product \((\mathcal{B} \cdot \mathcal{N}) \mathcal{N} \subseteq \mathcal{C}_2 \) and \(\mathcal{N} (\mathcal{B} \cdot \mathcal{N}) \subseteq \mathcal{C}_2 \). It follows that \(\mathcal{C}_1 \mathcal{N} \subseteq \mathcal{C}_2, \mathcal{N} \mathcal{C}_1 \subseteq \mathcal{C}_2 \).

The proof follows from the flexible law as does (2) which was proved by Schafer. The linearized form of the flexible identity is

\[
(xy)z + (zy)x = x(yz) + z(yx).
\]

Add \((yx)z + (yz)x \) to both sides of (3) to obtain the equivalent relation

\[
(x \cdot y)z + (y \cdot z)x = yz \cdot x + yx \cdot z.
\]
If x is in \mathfrak{N}, y, z in \mathfrak{G}, then $(y \cdot z)x$ is in $(\mathfrak{N} \cdot \mathfrak{G}) \mathfrak{G} \subseteq \mathfrak{N} \mathfrak{G}$. By Lemma 1, $(y \cdot z)x$ is in C_1. The product yz is in $\mathfrak{N} \mathfrak{G} + \mathfrak{N}$ so $yz \cdot x$ is in $\mathfrak{B} + \mathfrak{N} \cdot \mathfrak{B} = C_1$. And $yx \cdot z$ is in $\mathfrak{N} \mathfrak{G} \cdot \mathfrak{N} \subseteq C_2$. Therefore, $(x \cdot y)z$ is in C_2 as desired.

Lemma 3. The product $[\mathfrak{B}(R^+_I)^i] \mathfrak{N} \subseteq C_{i+1}$ and $\mathfrak{N}[\mathfrak{B}(R^+_I)^i] \subseteq C_{i+1}$. Or, equivalently, $C_i \mathfrak{N} \subseteq C_{i+1}$, $\mathfrak{N} C_i \subseteq C_{i+1}$.

Assume that $[\mathfrak{B}(R^+_I)^i-1] \mathfrak{N}$ and $\mathfrak{N} [\mathfrak{B}(R^+_I)^i-1]$ are in C_i. Take x in (4) to be in $S = \mathfrak{B}(R^+_I)^{i-1}$, and y, z to be in \mathfrak{N}. Then $(y \cdot z)x$ is in $\mathfrak{N} \mathfrak{S} \subseteq C_i$, $yz \cdot x$ is in $\mathfrak{S} + \mathfrak{N} \cdot \mathfrak{S} \subseteq C_i$, and $yx \cdot z$ is in $(\mathfrak{N} \mathfrak{S}) \cdot \mathfrak{N} \subseteq C_{i+1}$. Thus $(x \cdot y)z$ is in C_{i+1}.

Lemma 4. There exists a positive integer k such that $C_k = C_{k+1}$ and C_k is an ideal of \mathfrak{A}.

The set \mathfrak{B} is contained in \mathfrak{N}. Since \mathfrak{N}^+ is a Jordan algebra, \mathfrak{N}^+ is nilpotent. Consequently, $\mathfrak{B}(R^+_I)^{k+1} = 0$ for some k. For this k, $C_k = C_{k+1}$. By Lemma 3 $C_k \mathfrak{N} \subseteq C_{k+1} = C_k$ and $\mathfrak{N} C_k \subseteq C_k$.

The ideal C_k is contained in $\mathfrak{N} \cdot \mathfrak{N} \cdot \mathfrak{N} = \mathfrak{N}_3$. Since \mathfrak{N}^+ is a subalgebra of \mathfrak{N}^+, $\mathfrak{N}_3 \subseteq \mathfrak{N}$ and so $C_k \subseteq \mathfrak{N}$. If \mathfrak{A} is a simple algebra, $C_k = 0$ and thus $\mathfrak{B} = 0$. This says that every associator in \mathfrak{N}^+ is zero. Now if a, b, c are any elements in \mathfrak{A}, $a = \alpha_1 + x$, $b = \beta_1 + y$, $c = \gamma_1 + z$ with x, y, z in \mathfrak{N}. Then $(a \cdot b) \cdot c - a \cdot (b \cdot c) = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ so every associator in \mathfrak{N}^+ is an associator in \mathfrak{N}^+. This completes the proof of the theorem.

Any ideal properly contained in \mathfrak{A} is contained in \mathfrak{N}, hence is a nilideal and is contained in the radical of \mathfrak{A}. This implies the corollary which we state below.

Corollary. Let \mathfrak{A} be a semisimple nodal noncommutative Jordan algebra of characteristic $\neq 2$. Then \mathfrak{A} is simple and \mathfrak{N}^+ is associative.

References

Washington University