CONGRUENCES FOR THE COEFFICIENTS OF MODULAR FORMS AND FOR THE COEFFICIENTS OF $j(\tau)$

MORRIS NEWMAN

Congruence properties of the coefficients of the complete modular invariant

$$j(\tau) = 12^3 J(\tau) = \sum_{n=-1}^{\infty} c(n)x^n = \frac{1}{x} + 744 + 196884x + \cdots,$$

$x = \exp 2\pi i\tau$, $\Im \tau > 0$, have been given by D. H. Lehmer [1], J. Lehner [2; 3], and A. van Wijngaarden [4]. The moduli for which congruence properties have been determined are products of powers of 2, 3, 5, 7, 11. Thus Lehner has shown that if $n > 1$ is divisible by $2^{a_2}3^{b_3}5^{c_5}7^{d_7}11^e$, where $a, b, c, d \geq 1$ and $e = 1, 2, 3$ then $c(n)$ is divisible by $2^{2a+832b+935c+17d}11^e$.

In this note we give several congruence properties modulo 13, derived from some general congruences for the coefficients of certain modular forms and an explicit formula for the coefficients $c(n)$. These general congruences are of interest in themselves and will be proved here as well.

If n is a non-negative integer, define $p_r(n)$ as the coefficient of x^n in $\prod (1-x^n)^r$; otherwise define $p_r(n)$ as zero.² (Here and in what follows all products are extended from 1 to ∞ and all sums from 0 to ∞, unless otherwise stated.) Special cases of identities proved by the author in [5] and [6] follow:

Let p be a prime > 3. Set $\delta = (p-1)/12$, $\Delta = (p^2-1)/12$. Then

1. $p_2(np + \delta) = p_2(n)p_2(\delta) - p_2\left(\frac{n - \delta}{p}\right), \quad p = 1 \pmod{12}$

2. $p_2(np + \Delta) = (-1)^{(p+1)/2}p_2(n/p), \quad p \not\equiv 1 \pmod{12}$.

The coefficient $p_2(\delta)$ has been determined by the author in [7]. As a matter of fact, $p_2(\delta)$ is just $2(-1)^{e}$, where e is the integer nearest to $(a+b)/6$ and a, b are the uniquely determined positive integers such that $2p = a^2 + b^2$.

From these identities, we shall prove the following congruences:

Received by the editors March 7, 1958.

¹ The preparation of this paper was supported (in part) by the Office of Naval Research.

² The same convention applies to all the number-theoretical functions appearing subsequently.
THEOREM. Let \(Q \) be an integer and set \(R = Qp + 2 \). Then

\[
\begin{align*}
(3) \quad p_R(np + \delta) &\equiv p_2(\delta) p_{q+2}(n) - p_{2p+Q}(n - \delta) \pmod{p}, \quad p \equiv 1 \pmod{12} \\
(4) \quad p_R(np + \Delta) &\equiv (-1)^{(p+1)/2} p_{2p+Q}(n) \pmod{p}, \quad p \not\equiv 1 \pmod{12}.
\end{align*}
\]

PROOF OF THE THEOREM. We prove only congruence (3), the proof of congruence (4) being entirely similar. We have

\[
\prod (1 - x^n)^R = \prod (1 - x^n)^{Qp + 2} = \prod (1 - x^{np})^Q (1 - x^n)^2 \pmod{p}.
\]

Comparing coefficients, we find

\[
p_R(n) = \sum_{0 \leq j < n/p} p_Q(j) p_2(n - p_j) \pmod{p}.
\]

Replace \(n \) by \(np + \delta \). Since \(\delta/p < 1 \), \(j \) now runs from 0 to \(n \) inclusive, and making use of (1) we find

\[
p_R(np + \delta) = \sum_{j=0}^{n} p_Q(j) p_2((n - j)p + \delta)
\]

\[
= \sum_{j=0}^{n} p_Q(j) \left\{ p_2(n - j) p_2(\delta) - p_2 \left(\frac{n - j - \delta}{p} \right) \right\}
\]

\[
= p_{q+2}(n) p_2(\delta) - \sum_{j=0}^{n} p_Q(j) p_2 \left(\frac{n - j - \delta}{p} \right) \pmod{p}.
\]

Consider

\[
\sum_{j=0}^{n} p_Q(j) p_2 \left(\frac{n - j - \delta}{p} \right) = \sum_{j=0}^{m} p_Q(m - j) p_2(j/p), \quad m = n - \delta.
\]

We have

\[
\sum \left\{ \sum_{j=0}^{m} p_Q(m - j) p_2(j/p) \right\} x^m = \sum p_Q(m) x^m \sum p_2(m) x^{mp}
\]

\[
= \prod (1 - x^m)^Q (1 - x^{mp})^2
\]

\[
= \prod (1 - x^m)^{Q+2p} \pmod{p}.
\]

Thus

\[
\sum_{j=0}^{m} p_Q(m - j) p_2(j/p) \equiv p_{2p+Q}(m) \pmod{p},
\]

and the conclusion follows.

Some interesting consequences of this theorem are obtained by
choosing $Q = \pm 2$, $Q = -2p$. Setting $\alpha = 2p + 2$, $\beta = 2p - 2$, and $\gamma = 2p^2 - 2$ we find

(5) $p_\alpha(np + \delta) \equiv p_\delta(p_4(n) - p_\alpha(n - \delta)) \pmod{p}, \quad p \equiv 1 \pmod{12}$

(6) $p_{-\beta}(np + \delta) \equiv - p_\beta(n - \delta) \pmod{p}, \quad n \geq 1, \quad p \equiv 1 \pmod{12}$

(7) $p_{-\gamma}(np + \delta) \equiv p_\delta(p_{-\beta}(n)) \pmod{p}, \quad n \geq 1, \quad p \equiv 1 \pmod{12}$

(8) $p_\alpha(np + \Delta) \equiv (-1)^{(p+1)/2} p_\alpha(n) \pmod{p}, \quad p \neq 1 \pmod{12}$

(9) $p_{-\gamma}(np + \Delta) \equiv 0 \pmod{p}, \quad n \geq 1, \quad p \neq 1 \pmod{12}$.

For $p = 13$, (6) implies that

(10) $p_{-24}(13n + 1) \equiv - p_{24}(n - 1) \equiv - \tau(n) \pmod{13}, \quad n \geq 1.$

We now wish to employ these congruences to determine a congruence for $\tau(n)$ modulo 13. It is known that if

$$G_k = \sum (mr + n)^{-2k} = B_k + (-1)^k 4k \sum_{n=1}^{\infty} \sigma_{2k-1}(n)x^n$$

is the Eisenstein modular form,

$$\Delta = x \prod (1 - x^n)^{24} = \sum_{n=1}^{\infty} \tau(n)x^n,$$

and r, s are integers such that $rk = 6s$, then G_k/Δ^s is an entire modular function on the full modular group Γ having a pole of order s in the uniformizing variable x at $\tau = i \infty$, and so is a polynomial in J of degree s. For $k = 6, r = s = 1$, we find that G_6/Δ is linear in J. Comparing coefficients we find that

(11) $c(n) = p_{-24}(n + 1) + \frac{24 \cdot 2730}{691} \sum_{j=0}^{n} \sigma_{11}(j + 1)p_{-24}(n - j), \quad n \geq 1$

and since $13 | 2730$, this implies that

(12) $c(n) \equiv p_{-24}(n + 1) \pmod{13}, \quad n \geq 1.$

Thus making use of (10) we obtain the interesting congruence

(13) $c(13n) \equiv - \tau(n) \pmod{13}, \quad n \geq 1.$

It is known that $\tau(n)$ is multiplicative. In fact if p is a prime, Mordell has shown that

(14) $\tau(np) = \tau(n)\tau(p) - p^{11}\tau(n/p).$

We thus obtain the following congruence, using (13) and (14):

(15) $c(13np) + c(13n)c(13p) + p^{11}c(13n/p) \equiv 0 \pmod{13}.$
From (15) we find easily that if \(p \) is a prime such that \(13 | \tau(p) \), and if \((n, p) = 1\), then
\[
(16) \quad c(13n p^{\alpha - 1}) \equiv 0 \pmod{13}.
\]

For \(p < 200 \), this happens for \(p = 7, 11, 157, 179 \). Thus we can say for example that \(c(91n) \) is divisible by 13 if \((n, 7) = 1\) and that \(c(143n) \) is divisible by 13 if \((n, 11) = 1\). The least value which is an instance of (16) is 91. In his paper [4] van Wijngaarden gives \(c(91) \), and this is indeed divisible by 13.

Several instances of (15) follow:
\[
\begin{align*}
(17) \quad c(26n) & \equiv 2c(13n) + 6c(13n/2) \pmod{13}, \\
(18) \quad c(39n) & \equiv 5c(13n) + 4c(13n/3) \pmod{13}, \\
(19) \quad c(169n) & \equiv 8c(13n) \pmod{13}.
\end{align*}
\]

References

National Bureau of Standards