A NOTE ON THE RELATIONSHIP BETWEEN CERTAIN SUBGROUPS OF A FINITE GROUP

W. E. DESKINS

A well-known result of G. Frobenius (cf. [2]) states that if \mathcal{C} is a normal subgroup of the finite group G, then an irreducible G-module (relative to any base field \mathfrak{F}) either remains irreducible as an \mathcal{C}-module or decomposes into a direct sum of conjugate irreducible \mathcal{C}-modules. Simple examples readily demonstrate that the conclusion of this theorem may hold even though \mathcal{C} is not normal. In §1 a version of the Frobenius result is stated and the converse considered. This opens the question: What is the relationship between a group G and one of its subgroups \mathcal{C} if each irreducible G-module over a field \mathfrak{F} remains irreducible as an \mathcal{C}-module? It is shown in §2 that for "most" fields \mathfrak{F} (the modular fields naturally cause a certain amount of difficulty) the answer is that G is an extension of \mathcal{C} by an abelian group such that each conjugate class of \mathcal{C} is also a conjugate class of G. To determine whether this last property leads to the conclusion that G is the trivial extension of \mathcal{C}, extensions are considered in §3 and it is shown that the answer is in general negative. However, using a result due to M. Hall [4] it is proved that this latter property does imply that G is the trivial extension of \mathcal{C} in many cases.

Since results contingent on absolute irreducibility are used in certain proofs, it will be assumed throughout this note that \mathfrak{F} is always a splitting field for every irreducible representation of the groups being discussed.

1. Preliminary remarks. Let \mathcal{C} be a subgroup of the finite group G and let M be a left (right) G-module with base field \mathfrak{F}. If N is a left (right) \mathcal{C}-submodule of M and if $G \subseteq \mathcal{C}$, then submodule $G \cdot N(\cdot N)$ of M is said to be a conjugate of N relative to G. Obviously it need not be an \mathcal{C}-module.

Now the key to the Frobenius Theorem is the result [2]:

If \mathcal{C} is a normal subgroup of G then an irreducible G-module M contains an irreducible \mathcal{C}-submodule N which has the property that each conjugate of N relative to G is also an \mathcal{C}-module.

Consideration of the converse proposition leads to the following:

Received by the editors February 20, 1958.

1 It was pointed out by the referee that Theorem 3, for example, may be false if \mathfrak{F} is not a splitting field for every irreducible representation of G and H. The symmetric group on three elements, its normal subgroup, and the rational field illustrate this possibility.
Theorem 1. If \(\mathcal{K} \) is a subgroup of \(\mathfrak{G} \) such that each irreducible \(\mathfrak{G} \)-module \(\mathcal{M} \) over a field \(\mathfrak{F} \) contains an irreducible \(\mathfrak{K} \)-module \(\mathcal{U} \) all of whose conjugates relative to \(\mathfrak{G} \) are also \(\mathcal{K} \)-modules, then each irreducible \(\mathcal{K} \)-module remains irreducible as an \(\mathcal{K} \)-module, where \(\mathcal{K} \) is the minimal normal subgroup of \(\mathfrak{G} \) which contains \(\mathcal{K} \).

Let \(\mathcal{M} \) be an irreducible left \(\mathfrak{G} \)-module. Since \(\mathcal{K} \) is normal in \(\mathfrak{G} \), \(\mathcal{M} \) is a direct sum of conjugate irreducible left \(\mathcal{K} \)-modules, \(\mathcal{R}_i \), each of dimension \(m \) relative to \(\mathfrak{F} \): \(\mathcal{M} = \mathcal{R}_1 + \cdots + \mathcal{R}_n \), \(n \geq 1 \). On the other hand, from the hypothesis \(\mathcal{M} \) contains an irreducible left \(\mathcal{K} \)-submodule \(\mathcal{U} \) all of whose conjugates relative to \(\mathfrak{G} \) are also \(\mathcal{K} \)-modules, necessarily irreducible. Now let \(G \subseteq \mathfrak{G}, H \subseteq \mathcal{K} \); then \(GU \) is an \(\mathcal{K} \)-module and therefore \((G^{-1}HG)\mathcal{U} = G^{-1}H(GU) = G^{-1}(GU) = \mathcal{U} \). So \(\mathcal{U} \), of dimension \(u \) over \(\mathfrak{F} \), is an irreducible \(\mathcal{K} \)-module. Therefore \(m = u \) and since each \(\mathcal{R}_i \) is also a left \(\mathcal{K} \)-module it must remain irreducible as an \(\mathcal{K} \)-module. As every irreducible \(\mathcal{K} \)-module is \(\mathcal{K} \)-isomorphic with a submodule of a \(\mathfrak{G} \)-module, the result follows.

This interesting relationship between \(\mathcal{K} \) and \(\mathfrak{G} \) will be investigated in the remainder of the paper.

2. Property \(\mathfrak{S} \). To simplify matters we introduce the following definition. A subgroup \(\mathcal{K} \) of the group \(\mathfrak{G} \) is said to possess property \(\mathfrak{S} \) relative to the field \(\mathfrak{F} \) if each irreducible \(\mathfrak{G} \)-module over \(\mathfrak{G} \) remains irreducible as an \(\mathcal{K} \)-module.

Theorem 2. If \(\mathcal{K} \) possesses property \(\mathfrak{S} \) relative to \(\mathfrak{G} \), then \(\mathcal{K} \) is normal in \(\mathfrak{G} \) and \(\mathfrak{G}/\mathcal{K} \) is an abelian group if either of the following conditions is satisfied:

(i) The radical \(\mathfrak{R}(\mathfrak{G}) \) of the group algebra \(\mathfrak{A}(\mathfrak{G}) \) of \(\mathfrak{G} \) over \(\mathfrak{F} \) equals \(\mathfrak{A}(\mathfrak{G}) \cdot \mathfrak{K}(\mathcal{K}) \), where \(\mathfrak{K}(\mathcal{K}) \) is the radical of \(\mathfrak{A}(\mathcal{K}) \), the group algebra of \(\mathcal{K} \) over \(\mathfrak{F} \).

(ii) The characteristic of \(\mathfrak{G} \) is \(p \) and \(\mathcal{K} \) is a Sylow \(p \)-subgroup of \(\mathfrak{G} \).

Let \(\mathfrak{F} \) be the ideal of \(\mathfrak{A}(\mathcal{K}) \) which has as its basis the differences \(H_i - H_j \), all \(H_i, H_j \subseteq \mathcal{K} \). Then \(\mathcal{K} \) is normal in \(\mathfrak{G} \) if and only if the left ideal \(\mathfrak{L} = \mathfrak{A}(\mathfrak{G}) \cdot \mathcal{K} \) is a two-sided ideal in \(\mathfrak{A}(\mathfrak{G}) \). Now (i) implies that \(\mathfrak{L} \supseteq \mathfrak{R}(\mathfrak{G}) \), since \(\mathfrak{L} \supseteq \mathfrak{R}(\mathcal{K}) \), so it will be sufficient to show that \(\mathfrak{A}(\mathfrak{G}) = \mathfrak{A}(\mathfrak{G}) - \mathfrak{R}(\mathfrak{G}) \) is an ideal. \(\mathfrak{A}(\mathfrak{G}) \) contains an algebra \(\mathfrak{D} \supseteq \mathfrak{A}(\mathcal{K}) \) and \(\mathfrak{D} = \mathfrak{U} \oplus \mathfrak{B} \) with \(\mathfrak{U} \supseteq \mathfrak{A}(\mathcal{K}) - \mathfrak{G} \) and of dimension one over \(\mathfrak{F} \). Then \(\mathfrak{A}(\mathfrak{G}) = \mathfrak{A}(\mathfrak{G}) \mathfrak{D} = \mathfrak{A}(\mathfrak{G}) \mathfrak{U} + \mathfrak{A}(\mathfrak{G}) \mathfrak{B} \), a direct sum of left ideals of \(\mathfrak{A}(\mathfrak{G}) \), with \(\mathfrak{A}(\mathfrak{G}) \mathfrak{B} \supseteq \mathfrak{G} \). But \(\mathfrak{A}(\mathfrak{G}) \mathfrak{U} \) and \(\mathfrak{G} \) are right \(\mathcal{K} \)-modules, so if \(\mathfrak{B} \) is a minimal right ideal of \(\mathfrak{A}(\mathfrak{G}) \), hence an irreducible right \(\mathcal{K} \)-module, it must lie entirely in \(\mathfrak{A}(\mathfrak{G}) \mathfrak{U} \) or \(\mathfrak{G} \). Hence \(\mathfrak{G} \)}
is also a right ideal of $\mathfrak{A}(G)$ and so \mathfrak{K} is normal in G. Furthermore G/\mathfrak{K} is represented isomorphically over $\mathfrak{A}(G) = \mathfrak{A}(G)/\mathfrak{A}(\mathfrak{K}) \cup$ which is necessarily a sum of fields since \cup is one dimensional.

If (ii) is satisfied then all the irreducible representations of G are one dimensional since the only irreducible representation of \mathfrak{K} is the identity representation. Therefore there exists a minimal normal subgroup \mathfrak{K} such that G/\mathfrak{K} is abelian and $\mathfrak{A}(G/\mathfrak{K})$ is semisimple. It follows simply (cf. [3]) that \mathfrak{K} is necessarily of order p^a and hence $\mathfrak{K} = \mathfrak{K}$.

If G is restricted so that $\mathfrak{A}(G)$ is semisimple then the following deeper result may be obtained.

Theorem 3. If \mathfrak{K} is a subgroup of G possessing property \mathfrak{A} relative to the field \mathfrak{F} of characteristic 0 or p, $(p, o(G)) = 1$, then each conjugate class of \mathfrak{K} is also a conjugate class in G.

Let $\mathfrak{C}(G)$ and $\mathfrak{C}(\mathfrak{K})$ be the centers of $\mathfrak{A}(G)$ and $\mathfrak{A}(\mathfrak{K})$ respectively. We must show that $\mathfrak{C}(\mathfrak{K})$ is a subalgebra of $\mathfrak{C}(G)$. Let \mathfrak{L} be a minimal left ideal of $\mathfrak{A}(G)$; hence it is an irreducible left \mathfrak{K}-module and so there exists a primitive idempotent $e \in \mathfrak{C}(\mathfrak{K})$ such that $e\mathfrak{A}(\mathfrak{K})\mathfrak{L} = \mathfrak{L}$. Now $\mathfrak{A}(G) = \mathfrak{A}(\mathfrak{K}) \cdot \mathfrak{A}(G)$ and $e\mathfrak{A}(\mathfrak{K})\mathfrak{A}(G) \supset \mathfrak{L}$, so if \mathfrak{L} is the set of all minimal left ideals \mathfrak{L} of $\mathfrak{A}(G)$ such that $e\mathfrak{A}(\mathfrak{K})\mathfrak{L} = \mathfrak{L}$, then $e\mathfrak{A}(\mathfrak{K})\mathfrak{A}(G) = \bigcup_{\mathfrak{L} \in \mathfrak{L}} \mathfrak{L}$. Since $\mathfrak{C}(\mathfrak{K})$ may be written as $(e_1) \oplus \cdots \oplus (e_m)$, each e_i a primitive idempotent, then $\mathfrak{A}(G) = e_1\mathfrak{A}(\mathfrak{K})\mathfrak{A}(G) + \cdots + e_m\mathfrak{A}(\mathfrak{K})\mathfrak{A}(G)$ is a direct decomposition of $\mathfrak{A}(G)$ into left ideals. Observing that $e_i - Ge_iG^{-1}$ annihilates $\mathfrak{A}(G)$ from the left, any $G \in \mathfrak{G}$, we conclude that $\mathfrak{C}(\mathfrak{K}) \subseteq \mathfrak{C}(G)$.

Indicative of the inconclusiveness of the modular case is

Theorem 4. If \mathfrak{K} is a subgroup of G possessing property \mathfrak{A} over the field \mathfrak{F} of characteristic p and if all the irreducible representations of \mathfrak{K} over \mathfrak{F} are one dimensional, then G is an extension of a p-group by an abelian group of order q, $(q, p) = 1$. Conversely, if G is an extension of a p-group by an abelian group of order q, $(q, p) = 1$, then any subgroup \mathfrak{K} of G possesses property \mathfrak{A} relative to a field of characteristic p.

Since an irreducible \mathfrak{K}-module has dimension one, property \mathfrak{A} implies that each irreducible G-module is one dimensional over \mathfrak{F}. Therefore $\mathfrak{A}(G) = \mathfrak{A}(G) - \mathfrak{N}(G)$ is a commutative algebra. If $G' = \mathfrak{C}(G)$ is the commutator subgroup of G and if \mathfrak{L} is the ideal of $\mathfrak{A}(G)$ generated by the differences $G_i - G_j$, all $G_i, G_j \in G'$, then clearly $\mathfrak{L} \subseteq \mathfrak{N}(G)$. This means that G' is a p-group (cf. [3]), and the remainder of the theorem is obvious.
Throughout the remainder of the paper the field \mathcal{F} will be assumed to have characteristic 0 or p with $(p, g) = 1$, g the order of \mathcal{F}. Then the next result completely characterizes property \mathcal{S} over \mathcal{F}.

Theorem 5. Let \mathcal{K} be a normal subgroup of \mathcal{G} of order h and let \mathcal{K} contain s \mathcal{K}-conjugate classes. Then \mathcal{K} possesses property \mathcal{S} over \mathcal{F} if and only if \mathcal{G} contains ns \mathcal{G}-conjugate classes, where $g = hn$.

Let e be a primitive idempotent from the center of $\mathfrak{A}(\mathcal{K})$. Then $\mathcal{I} = e\mathfrak{A}(\mathcal{K})$ is a minimal two-sided ideal of $\mathfrak{A}(\mathcal{K})$ of order t^2. If \mathcal{K} possesses property \mathcal{S}, then by Theorem 3 e is a central idempotent of $\mathfrak{A}(\mathcal{G})$ and therefore $\mathcal{B} = e\mathfrak{A}(\mathcal{K})\mathfrak{A}(\mathcal{G})$ is a two-sided ideal of $\mathfrak{A}(\mathcal{G})$ of order nt^2. Since \mathcal{I} is orthogonal with $\mathfrak{A}(\mathcal{K}) - \mathcal{I}$ it follows that each minimal \mathcal{K}-submodule of \mathcal{B} is isomorphic with a minimal \mathcal{K}-submodule of \mathcal{I} and hence is of order t. Then it follows from property \mathcal{S} that each minimal left or right ideal of \mathcal{B} is of order t, and therefore \mathcal{B} is expressible as a direct sum of n two-sided ideals of $\mathfrak{A}(\mathcal{G})$, each of order t^2. Since the dimension of the center of $\mathfrak{A}(\mathcal{K})$ is s this implies that $\mathfrak{A}(\mathcal{G})$ decomposes into a direct sum of ns minimal ideals. Hence \mathcal{G} contains ns conjugate classes.

Conversely, suppose \mathcal{G} possesses ns conjugate classes. Since \mathcal{K} has s conjugate classes, $\mathfrak{A}(\mathcal{K}) = \mathcal{I}_1 \oplus \cdots \oplus \mathcal{I}_s$ and this decomposition is unique. Now if $G \in \mathcal{G}$, $A \in \mathfrak{A}(\mathcal{K})$, the mapping $\theta_G: A \mapsto A^G = GAG^{-1}$ is an automorphism of $\mathfrak{A}(\mathcal{K})$ and \mathcal{I}_j^G is a minimal ideal \mathcal{I}_j of $\mathfrak{A}(\mathcal{K})$. Therefore, under the set of all automorphisms induced by inner automorphisms of \mathcal{G}, the minimal ideals \mathcal{I} of $\mathfrak{A}(\mathcal{K})$ separate into non-overlapping sets of transitivity, S_1, \cdots, S_m. That is, if S_i consists of the ideals $\mathcal{I}_{i,1}, \cdots, \mathcal{I}_{i,d(i)}$, then $\mathcal{I}_j^G = \mathcal{I}_{ik}$, $1 \leq k \leq d(i)$, for any $G \in \mathcal{G}$, and given any pair \mathcal{I}_{ip} and \mathcal{I}_{iq} there exists an element G in \mathcal{G} such that $\mathcal{I}_{iq} = \mathcal{I}_{ip}^G$. Then $\mathcal{B}_j = (\mathcal{I}_{i,1} + \cdots + \mathcal{I}_{i,d(i)})\mathfrak{A}(\mathcal{G})$ is a two-sided ideal of $\mathfrak{A}(\mathcal{G})$ of order $n t_i^2 d(i)$, t_i^2 the order of \mathcal{I}_{ij}.

Let \mathfrak{L} be a minimal left ideal of \mathfrak{B}_i. Then $\mathfrak{I}_{ij}\mathfrak{L} \neq (0)$ for some j and therefore, because of the transitivity of S_i, for all j. Since $\mathcal{I}_v \mathfrak{L}$ is necessarily of order $\geq t_i$ and since $\mathcal{I}_{ij}\mathfrak{I}_{ij} = \delta_{ij}\mathcal{I}_{ij}$, this implies that the order of \mathfrak{L} is $\geq t_i d(i)$. Therefore a minimal two-sided ideal of \mathfrak{B}_i is of order $\geq t_i^2 [d(i)]^2$, and so no decomposition of \mathfrak{B}_i contains more than $n/d(i)$ two-sided ideals. Therefore $\mathfrak{A}(\mathcal{G})$ decomposes into a sum of not more than $n(1/d(1) + \cdots + 1/d(m))$ minimal ideals. However, since \mathcal{G} contains ns conjugate classes, $\mathfrak{A}(\mathcal{G})$ decomposes into a direct sum of ns minimal ideals. Hence $d(1) = \cdots = d(m) = 1$, $m = s$, and each minimal left ideal \mathfrak{L} of \mathfrak{B}_i is of order t_i. Since \mathfrak{L} is a left \mathcal{I}_i-module whose order equals the order of a minimal left ideal of \mathcal{I}_i it follows that \mathcal{K} possesses property \mathcal{S}.
Berman has proved [1] that if \mathcal{K} is a normal subgroup of \mathcal{G} such that \mathcal{G}/\mathcal{K} is cyclic of order n and if each of \mathcal{G}-conjugate classes C_i contained in \mathcal{K} splits into $k_i \mathcal{K}$-conjugate classes, then \mathcal{G} contains $n(k_1^{-1} + \cdots + k_s^{-1})$ conjugate classes. This result and the previous theorem yield a partial converse to Theorem 3:

Theorem 6. If \mathcal{G} is an extension of \mathcal{K} by a cyclic group and if each conjugate class of \mathcal{K} is also a conjugate class of \mathcal{G}, then \mathcal{K} possesses property \mathcal{G} over \mathcal{G}.

3. **Group extensions by abelian groups.** Obviously the trivial extension \mathcal{G} of a group \mathcal{K} by an abelian group \mathcal{Q}, $\mathcal{G} = \mathcal{K} \times \mathcal{Q}$, contains a normal subgroup $\mathcal{K}' \cong \mathcal{K}$ possessing property \mathcal{G} over \mathcal{G}. Is the trivial extension the only one for which this is so? We shall see that the answer to this depends on whether or not the order c of \mathcal{K} is prime to the order n of \mathcal{G}/\mathcal{K}.

If \mathcal{K} possesses property \mathcal{G} in \mathcal{G} then we have seen that \mathcal{K} is normal in \mathcal{G} and that \mathcal{G} induces class-preserving automorphisms on \mathcal{K}. Then the additional condition, $(c, n) = 1$, permits us to apply a result due to M. Hall [4, Theorem 6.1] and to conclude that \mathcal{G} is a trivial extension of \mathcal{K}.

In the other direction we prove the following:

Lemma. If \mathcal{K} is a group containing a q-subgroup \mathcal{Q}, q a prime, in its center, then there exists a nontrivial extension \mathcal{G} of \mathcal{K} such that \mathcal{G} contains a subgroup $\mathcal{K}' \cong \mathcal{K}$ possessing property \mathcal{G} in \mathcal{G}, \mathcal{G}/\mathcal{K}' of order q.

Let A be a generator of a cyclic q-subgroup of \mathcal{K} which is of maximal order q^r among those contained in the center of \mathcal{K}. Let x be an indeterminate and define \mathcal{G} to be the set of all ordered pairs (x^i, H) where $0 \leq i < q$, $x^0 = 1$, and H is an element of \mathcal{K}. Then multiplication in \mathcal{G} is determined by the following definitions: $(x, H_0)^q = (1, A)$, where H_0 is the identity element of \mathcal{K}, and $(x^i, H_j)(x^k, H_n) = (x^{m}, A^jH_{i+j}H_n)$ where $i+j = m+q$, $0 \leq m < q$. It is easy to verify that \mathcal{G} is a group containing a subgroup $\mathcal{K}' = (1, \mathcal{K}) \cong \mathcal{K}$ possessing property \mathcal{G} in \mathcal{G}. Furthermore \mathcal{G} is not isomorphic with the trivial extension of \mathcal{K} since it contains a cyclic q-subgroup of order q^{r+1} in its center.

To summarize these results:

Theorem 7. If a subgroup \mathcal{K} of a group \mathcal{G} possesses property \mathcal{G} relative to \mathcal{G} then \mathcal{G} may be a nontrivial extension of \mathcal{K} but only if the order of \mathcal{G}/\mathcal{K} is not prime to the order of \mathcal{K}.

A RING ADMITTING MODULES OF LIMITED DIMENSION

WILLIAM G. LEAVITT

Let K be a ring with unit. A module\(^1\) M over K is said to be finite dimensional if it (i) is finitely based, and (ii) contains no infinite independent set. For such a module there must exist [1, Theorem 7, p. 245] an integer n such that all bases have length n (the invariant basis number property), and no independent set has length greater than n. It was shown in a recent paper [1, Theorem 6, p. 245] that this property carries downward with decreasing length of basis. That is: If K admits a module of finite dimension n, then every module over K having a basis of length $\leq n$ is also finite dimensional.

It was remarked (in [1]) that this leaves open the possibility that a ring could exist admitting only modules of limited dimension. That is, for some fixed integer n there might exist a ring K such that a module over K is finite dimensional if and only if it has a basis of length $\leq n$. It is the purpose of this paper to construct such a ring for arbitrary n.

Let R be the ring of (noncommutative) polynomials generated over the field of integers modulo 2 by a countably infinite set of symbols $\{x_i, y_j\}$, with $i = 1, \ldots, m = (n+2)(n+1); j = 1, 2, \ldots$, where n is the fixed integer chosen. Let R' be the subring of R generated by the $\{x_i\}$. It is desired to order a (suitably restricted) set of n-dimensional row vectors of members of R'. Begin by ordering the set of all

Michigan State University

\(^1\) Throughout this paper "module" will mean "left module."