A REMARK CONCERNING A THEOREM OF B. FRIEDMAN

J. FELDMAN

In [1], the following theorem is stated: let T be a densely defined linear operator with closed range in the Hilbert space \mathcal{H}, with a densely defined adjoint T^* also having closed range. Let ϕ, ψ be vectors in \mathcal{H}, and let $\phi \otimes \psi$ be the operator defined by $\phi \otimes \psi(x) = (x, \phi)\psi$. Then $T + \phi \otimes \psi$ also has closed range.

Of course, the fact that T^* is densely defined implies that T is pre-closed; but an examination of the proof shows that it actually requires that T be a closed operator. Under this assumption, a simpler proof can be given; and the need for some such condition will be shown by example.

Theorem. Let T be a closed, densely defined operator with closed range. Then $S = T + \phi \otimes \psi$ also has a closed range.

Proof. The nullspace \mathfrak{N}_T of a closed operator T is closed, and its domain \mathcal{D}_T is the sum of the two subspaces \mathfrak{N}_T and $\mathcal{D}_T \cap \mathfrak{N}_T = \mathfrak{S}_T$, since x in \mathcal{D}_T can be written $(x - P\mathfrak{N}_Tx) + P\mathfrak{N}_Tx$ (where $P\mathfrak{N}_T$ denotes the orthogonal projection on the subspace \mathfrak{N}). If we use the graph norm on \mathcal{D}_T, given by the inner product $\langle x, y \rangle = (x, y) + (Tx, Ty)$, then \mathfrak{N}_T and \mathfrak{S}_T are complete, and \mathcal{D}_T is their Hilbert space direct sum.

T restricted to \mathfrak{S}_T is a 1-1 continuous operator from \mathfrak{S}_T (in the graph norm) to the range \mathfrak{R}_T of T. The closed graph theorem tells us that its inverse R is continuous, as an operator from the Hilbert space \mathfrak{R}_T to \mathfrak{S}_T. Now, the orthogonal complement $[\mathfrak{R}]^\perp$ of ϕ in \mathcal{H} is closed in \mathcal{H}. Thus its intersection with \mathfrak{S}_T is closed in the graph norm. Then $R^{-1}([\phi]^\perp \cap \mathfrak{S}_T) = T([\phi]^\perp \cap \mathfrak{S}_T)$ is closed in \mathcal{H}, $T([\phi]^\perp \cap \mathfrak{S}_T) = S([\mathfrak{R}]^\perp \cap \mathfrak{S}_T) \subset \mathfrak{R}_S \subset \mathfrak{R}_T + [\psi] = T(\mathfrak{S}_T) + [\psi]$. Now, the codimension of $T([\phi]^\perp \cap \mathfrak{S}_T)$ in $T(\mathfrak{S}_T) + [\psi]$ is at most two, so that of $T([\phi]^\perp \cap \mathfrak{S}_T)$ in \mathfrak{R}_s is again at most two. Since $T([\phi]^\perp \cap \mathfrak{S}_T)$ is closed, \mathfrak{R}_s is also closed.

Remark 1. If T had been merely preclosed, but with closed range, then it is easy to see $\mathfrak{R}_T = \mathfrak{R}_T$, so that $\mathfrak{S}_T = \mathfrak{T}_T + \phi \otimes \psi$ has closed range.

Remark 2. Here is an example of an operator T which is densely defined, bounded, and has closed range, and whose adjoint T^* is therefore bounded and has closed range, but for which $S = T + \phi \otimes \psi$ will not have closed range, for certain ϕ and ψ.

Let \mathcal{H}_0 be a proper infinite-dimensional subspace of \mathcal{H}, and

Received by the editors December 23, 1957.
ψ, ψ₁, ψ₂, ψ₃, ⋯ an orthonormal basis for ℋ₀. Let ψₙ = \(n^{-1/2}(n-1)^{1/2}\psi + \psi_n \). Then the set \(\Psi = \{\psi, \psi', \psi'', \cdots \} \) is linearly independent, and \(\|\psi_n - \psi\|^2 \to 0 \). Enlarge \(\Psi \) to a maximal linearly independent set \(\Phi \) in ℋ₀. Thus, the linear combinations of elements of \(\Phi \) span ℋ₀. Let \(\mathcal{K}_0 \) be the set of all linear combinations of elements of \(\Phi - \{\psi\} \). Then \(\mathcal{K}_0 \) has the following properties:

1. \(\mathcal{K}_0 \) is dense in ℋ₀.
2. \(\psi \in \mathcal{K}_0 \).
3. \(\mathcal{K}_0 + [\psi] = \mathcal{K}_0 \).

Let \(\phi \) be any unit vector in \(\mathcal{K}_0^⊥ \). Let \(T \) be the restriction of \(P_{\mathcal{K}_0} - \phi \otimes \psi \) to \(\mathcal{K}_0 + \mathcal{K}_0^⊥ \). Then clearly \(\mathcal{K}_0 \subset \mathcal{K}_0 + \mathcal{K}_0^⊥ \). Further, \(T|_{\mathcal{K}_0} = P_{\mathcal{K}_0}|_{\mathcal{K}_0} \), so \(\mathcal{K}_0 \subset \mathcal{K}_0 + \mathcal{K}_0^⊥ \). Finally, \(T\phi = -\psi \), so \(\mathcal{K}_0 + \mathcal{K}_0^⊥ \). Notice also that \(T^* = P_{\mathcal{K}_0} - \psi \otimes \phi \), and so if \(x = x_1 + x_2 + \alpha \psi \), where \(x_1 \in \mathcal{K}_0 \cap [\psi]^⊥ \), \(x_2 \in \mathcal{K}_0^⊥ \), then \(T^*x = x_1 + \alpha(\psi - \phi) \). Thus \(\mathcal{K}_0 = (\mathcal{K}_0 \cap [\psi]^⊥) + [\psi - \phi] \), clearly closed. However, \(T + \phi \otimes \psi = P_{\mathcal{K}_0}|_{\mathcal{K}_0} \) has \(\mathcal{K}_0 \) as its range.

Reference

University of California at Berkeley