AN EXTENSION OF A THEOREM OF MANDELBROJT

R. A. KUNZE

1. Introduction. In a recent paper [3] S. Mandelbrojt proved several interesting theorems concerning Fourier transforms and analytic functions. One of these results can be formulated as follows:

(1.1) Suppose $F \in L_\alpha$, $a \geq 0$, and that k is never zero outside the closed interval $[-a, \infty]$ where k is the Fourier transform of a function K in L_1 such that $K * F \equiv 0$. Then there exists a function F_0 analytic in the right half plane with the properties

(i) $|F_0(x + iy)| \leq \|F\| e^{\alpha x}, \quad x > 0,$

(ii) $\lim_{x \to +0} \int_{-N}^{N} |F_0(x + iy) - F(y)| \, dy = 0.$

It is not difficult to show that the conclusion is satisfied if we assume only that there exists for each t in $(-\infty, -a)$ a function K in L_1 (depending upon t) such that $K * F \equiv 0$ and $k(t) \neq 0$. Our principal aim in this paper is to extend this latter improved version to n-dimensions. That such an extension exists follows almost immediately from a theorem of Y. Fourés and I. E. Segal [1] concerning causal operators and analytic functions (once it is established that a certain bounded operator T determined by F is causal). On the other hand as indicated by these authors some of the results in [1], specifically those pertaining to domains of dependence, admit improvement when treated from the point of view of Banach algebras; as one is led naturally to making these improvements in the course of showing that T is causal we shall begin our discussion at this point.

2. Domains of dependence. Throughout this part \mathcal{G} will denote an arbitrary locally compact abelian group. As is well known, the Plancherel transform $U(U : L_2(\mathcal{G}) \to L_2(\mathcal{G}))$ establishes a one to one correspondence between bounded operators T on $L_2(\mathcal{G})$ that commute with translations and bounded measurable functions F on the dual group $\hat{\mathcal{G}}$. More precisely $T \leftrightarrow F$ if and only if $UTU^{-1} = M_F$ where M_F denotes the operation of multiplication by F on $L_2(\hat{\mathcal{G}})$. We recall that the spectrum or spectral set $\Lambda(F)$ of F is defined as the set of all x in \mathcal{G} such that $k(x) = 0$ whenever k is the (inverse) Fourier transform.

Received by the editors October 15, 1957.

1 This research was supported in whole by the United States Air Force under Contract No. AF49(638)-42, monitored by the AF Office of Scientific Research of the Air Force office.

553
of a function K in $L_2(\mathcal{G})$ such that $K * F \equiv 0$. The set of all such K forms a closed ideal I in $L_2(\mathcal{G})$. A theorem of Segal's [2] asserts that

(2.1) A sufficient condition that $K \in I$ is that its Fourier transform k vanishes outside a compact subset of the complement $\Lambda(F)'$ of $\Lambda(F)$.

Definition 2.1. A bounded operator T is said to be dependent upon a subset E of \mathcal{G} if Tg vanishes outside $N + E$ whenever N is compact, $g \in L_2$ and g vanishes outside N.

Definition 2.2. A bounded operator T has a domain of dependence if there exists a closed subset E of \mathcal{G} such that T is dependent upon E and is not dependent upon any proper closed subset of E. E is called a domain of dependence of T.

Theorem 2.1. Suppose T is a bounded operator on $L_2(\mathcal{G})$ that commutes with translations. Then T has a unique domain of dependence, and if $UTU^{-1} = M_F$, E is precisely the spectrum of F.2

Lemma 2.1. If T is dependent upon a closed set E then $\Lambda(F) \subseteq E$.

Let $e \in E'$ and choose a compact neighborhood N of 0 such that $E + N$ and $e + N$ are disjoint. Suppose $g, h \in L_2$ and vanish outside N, $e + N$. Then $(Tg)h = 0$ and taking Fourier transforms we get $(FG) * H \equiv 0$. Let x be a fixed character of \mathcal{G} (i.e. an element of \mathcal{G}) and denote the value of x at $t \in \mathcal{G}$ by $(x \cdot t)$. Replacing $g(t)$ by $k_2(t) = (x \cdot t)[g(t)]^{-1}$ we see that $K(u) = \int (u \cdot t)k_2(t)dt = [G(x - u)]^{-1}$. Hence $\int F(u - v)[G(x - (u - v))]^{-1}H(v)dv = 0$ for all u and putting $u = x$ we get $\int F(x - v)[G(v)]^{-1}H(v)dv = 0$. As x was arbitrary in \mathcal{G} it follows that $F \ast \bar{G}H \equiv 0$. Now by choosing g and h suitably (subject to the above restrictions) we can insure that $g^* \ast h(e) \neq 0$. Since $g^* \ast h$ is the (inverse) Fourier transform of $\bar{G}H$ it follows that $e \in \Lambda(F)'$, and consequently $\Lambda(F) \subseteq E$.

Proof of the theorem. Since $\Lambda(F)$ is closed and in view of the result just established it suffices to show that T is dependent upon $E = \Lambda(F)$. Suppose then that $g \in L_2$ and vanishes outside a compact subset N. To show that Tg vanishes outside $E + N$ it suffices to show that $(Tg, h) = 0$ for every $h \in L_2$, vanishing outside a compact subset C of $(E + N)'$. By Parseval's formula, it suffices to show that $\int FGH = 0$. Now $\int FGH = \int F[\bar{G}H]^{-1} = F \ast (\bar{G}H) \ast (o)$ and it is therefore sufficient to show that $F \ast (\bar{G}H) \ast \equiv 0$. The Fourier transform of $(\bar{G}H) \ast$ is $[g^* \ast h]^{-1}$ and as g vanishes outside N, $g^* \ast h$ vanishes outside $-N$. Thus $[g^* \ast h]^{-1}$ vanishes outside $C - N$. Furthermore $C - N$ is compact and disjoint from E. Consequently (2.1) applies and we see that $F \ast (\bar{G}H) \ast \equiv 0$.

Remark. In the case of a real (finite dimensional) vector group the domain of dependence for T in the sense of Fourés-Segal is simply the closed convex set generated by $\Lambda(F)$.

3. Mandelbrojt's theorem. Throughout this part \mathcal{G} will denote n-dimensional real Euclidean space regarded as a vector group. The dual of a cone C in \mathcal{G} is the cone \mathcal{C} in the dual group $\hat{\mathcal{G}}$ consisting of all x such that $(x \cdot t) \geq 0$ for all t in C. The tube Γ over \mathcal{C} is the set of all complex vectors $x + iy$, $x \in \mathcal{C}$, $y \in \hat{\mathcal{G}}$. Putting v for the vertex of C we define the spine of Γ to be the subset of all $v + iy$, $y \in \hat{\mathcal{G}}$. By means of an obvious correspondence we can identify functions on $\hat{\mathcal{G}}$ with functions on the spine of Γ. A function F_0 defined on the interior Γ^0 of Γ is said to extend a function F on the spine, or to have boundary values on the spine if any sequence $x_n \to v$ with x_n in \mathcal{C}^0 has a subsequence x_m such that $F_0(x_m + iy) \to F(v + iy)$ a.e. relative to Lebesgue measure.

A bounded operator T on $L^2(\mathcal{G})$ is said to be causal with respect to C if Tg vanishes outside $a + C$ whenever g is in L^2 and vanishes outside $a + C$, a being arbitrary in \mathcal{G}. We shall use the following reformulation of the basic result concerning bounded causal operators given in [1].

(3.1) Suppose C is a closed convex cone with vertex at 0 and nonempty interior. Let T be a bounded operator on $L^2(\mathcal{G})$ that commutes with translations, and suppose F is the unique (modulo null functions) bounded measurable function on $\hat{\mathcal{G}}$ such that $UTU^{-1} = M_F$ where U is the Plancherel transform,

$$U: L^2(\mathcal{G}) \to L^2(\hat{\mathcal{G}})$$

and M_F is the operation of multiplication by F on $L^2(\mathcal{G})$. Then T is causal with respect to C if and only if there exists a function F_0 analytic on the interior of the tube Γ over the dual of C that extends F and satisfies the additional conditions,

(i) $|F_0(z)| \leq \|F\|_\infty, \quad z \in \Gamma^0$

(ii) $\lim_{z \to 0} \int_D |F_0(x + iy) - F(y)|^2dy = 0$

where $x \to 0$ in \mathcal{C}^0 and D is an arbitrary compact subset of the spine of Γ.

Our extension of Mandelbrojt's theorem reads as follows.

Theorem 3.1. Suppose $F \in L^\infty(\hat{\mathcal{G}})$ and that C is a closed convex cone in \mathcal{G} with vertex at 0 and nonempty interior. Let a be a fixed element in C. Suppose further that there exists for each t outside $C - a$ a function K in $L^1(\mathcal{G})$ such that $K * F \equiv 0$ and $k(t) \neq 0$ where k is the (inverse) Fourier
transform of \(K \). Then there exists a function \(F_0 \) analytic on the interior of the tube \(\Gamma \) over the dual of \(C \) extending \(F \) and having the additional properties,

(i) \[|F_0(x + iy)| \leq \|F\|\infty e^{a \cdot z} \]

for all \(x \) in \(\mathcal{C}_0 \) and \(y \) in \(\hat{G} \).

(ii) \[\lim_{x \to 0} \int_D |F_0(x + iy) - F(y)|^2 dy = 0 \]

where \(x \to 0 \) in \(\mathcal{C}_0 \) and \(D \) is an arbitrary compact subset of the spine of \(\Gamma \).

It is easy to see that the theorem follows, by translation, from the case \(a = 0 \). The details of this reduction are given in the following

Lemma 3.1. If the theorem is true for \(a = 0 \) it is true in general.

Suppose \(F \in L_{\infty}(\mathcal{G}) \) and that the additional hypotheses of the theorem are satisfied. Put \(H(x) = e^{-i(a \cdot z)}F(x) \) and suppose \(t \in \mathcal{C}' \). Then \(t - a \in (C - a)' \) and there exists \(K \) in \(L_1(\mathcal{G}) \) such that \(K \ast F = 0 \) and \(k(t - a) \neq 0 \) where \(k(u) = (2\pi)^{-n/2}\int e^{i(u \cdot z)}K(x)dx \). Putting \(L(x) = e^{-i(a \cdot z)}K(x) \) it follows that \(1(t) = k(t - a) \neq 0 \) and that \(L \ast H(x) = e^{-i(a \cdot z)}K \ast F(x) = 0 \). Assume the theorem is true for the case \(a = 0 \), and let \(H_0 \) be the extension of \(H \). Define \(F_0 \) by

\[F_0(x + iy) = e^{a \cdot (x + iy)}H_0(x + iy) \]

for \(x \in \mathcal{C}_0 \) and \(y \in \hat{G} \). Then \[|F_0(x + iy)| \leq e^{a \cdot z}\|H\|\infty = e^{a \cdot z}\|F\|\infty, \]

and if \(D \) is a compact subset of the spine of \(\Gamma \) we have,

\[\int_D |F_0(x + iy) - F(y)|^2 dy \leq \int_D |e^{a \cdot (x + iy)}H_0(x + iy) - e^{ia \cdot y}H(y)|^2 dy \]

Now \[\int_D |e^{a \cdot z}H_0(x + iy) - H_0(x + iy)|^2 dy = (e^{a \cdot z} - 1)^2 \int_D |H_0(x + iy)|^2 dy \]

\[\to 0 \] as \(x \to 0 \) in \(\mathcal{C}_0 \), in view of (ii), and the fact that \((e^{a \cdot z} - 1)^2 \to 0 \). Combining these estimates we see that \(\int_D |F_0(x + iy) - F(y)|^2 dy \to 0 \) as \(x \to 0 \) through values in \(\mathcal{C}_0 \).

Proof of the Theorem. By the preceding lemma we can assume \(a = 0 \). Now let \(T \) be the bounded operator on \(L_2(\mathcal{G}) \) given by the equation \(T = U^{-1}M_FU \). It is apparent from (3.1) that it suffices to show that \(T \) is causal with respect to the cone \(C \). Since \(T \) commutes with translations we need only show that \(Tg \) vanishes outside \(C \) whenever \(g \) is in \(L_2 \) and vanishes outside \(C \). Furthermore as \(T \) is
bounded it suffices, by continuity, to consider the case that g vanishes outside a compact subset N of C. Now our assumptions clearly imply that the spectrum E of F is contained in C, and, by Theorem 2.1, T is therefore dependent upon E. Hence Tg vanishes outside $E+N$. Finally since C is closed under addition, $E+N$ is contained in C which concludes the proof.

References

Massachusetts Institute of Technology