ON A CLASS OF UNIVALENT, STAR SHAPED MAPPINGS

ALBERT SCHILD\(^1\)

1. Introduction. Among all functions \(w = f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) regular and univalent in the unit circle, two classes of functions have been discussed extensively: The class of functions mapping the unit circle onto star shaped regions, characterized by \(\text{Re}\{zf''(z)/f'(z)\} \geq 0 \) for \(|z| < 1 \), and the class of functions mapping the unit circle onto convex regions, characterized by \(\text{Re}\{zf''(z)/f'(z)\} + 1 \geq 0 \) for \(|z| < 1 \).

This short paper will examine some of the geometric and analytic properties of a class of functions \(w = f(z) = z + \sum_{n=2}^{\infty} a_n z^n \), which map the unit circle onto a region whose geometric nature is somewhat intermediate between star shaped and convex. The functions under consideration are to satisfy \(\text{Re}\{zf''(z)/f'(z)\} \geq 1/2 \) for all \(|z| < 1 \).

Interest in functions of this type can be traced back to two papers by A. Marx \([4]\) and E. Strohacker \([8]\) who have shown that for any function \(w = f(z) = z + \sum_{n=2}^{\infty} a_n z^n \), which maps the unit circle onto a convex region, we have \(\text{Re}\{zf''(z)/f'(z)\} \geq 1/2 \), and as the function \(f(z) = z/(1+z) \) shows, the constant 1/2 cannot be improved. It is also clear that the converse is not true, i.e. functions for which \(\text{Re}\{zf''(z)/f'(z)\} \geq 1/2 \) need not map the unit circle onto a convex region. An example of this type is given by the function \(w = f(z) = z - 1/3 z^2 \) for which \(\text{Re}\{zf''(z)/f'(z)\} \geq 1/2 \), \(|z| \leq 1 \), yet the image region is not convex.

Recently, interest in this class of functions was roused again in a paper by R. F. Gabriel \([2]\). There it is shown that if \(p(z) \) is analytic and single valued for \(|z| < 1 \), and if we denote by \(w_1(z) = 1 + \sum_{n=2}^{\infty} a_n z^n \) and by \(w_2(z) = z + \sum_{n=2}^{\infty} b_n z^n \) two linearly independent solutions of \(w'' + p(z)w = 0 \), then \(f(z) = w_1(z)/w_2(z) = 1/z + \cdots \) will map \(|z| \leq 1 \) onto the exterior of a convex region if and only if \(\text{Re}\{zf''(z)/f'(z)\} \geq 1/2 \) for \(|z| < 1 \).

M. S. Robertson \([6]\) considered also the class of functions \(w = f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) for which \(\text{Re}\{zf''(z)/f'(z)\} \geq \alpha > 0, |z| < 1 \).

Notation. On the following pages we shall denote the class of functions \(w = f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) regular and univalent in the unit circle by \(S \).

The subclass of \(S \) which map \(|z| < 1 \) onto a star shaped region, i.e. for which \(\text{Re}\{zf''(z)/f'(z)\} \geq 0 \) by St.

Presented to the Society, January 28, 1958; received by the editors March 7, 1958 and, in revised form, April 21, 1958.

\(^1\) This work was aided by a grant from the Committee on Research and Publications of Temple University.

751
The subclass of S_t which map $|z| < 1$ onto a “special” star shaped
region, i.e. for which \(\text{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} \geq 1/2 \) by S_{t^*}.

The subclass of S which map $|z| < 1$ onto a convex region, i.e. for
which \(\text{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} + 1 \geq 0 \) by C.

By [4] and [8] we obviously have:

1.1

\[S \supset S_{t^*} \supset C. \]

2. Methods for constructing functions of class S_{t^*}. The interme-
diacy of S_{t^*} between S_t and C suggests, that one might obtain func-
tions of class S_{t^*} by “relaxing” the conditions on functions of class C
or by “strengthening” conditions on functions of class S_t. Both meth-
ods yield results.

Theorem 2.1. If $w = f(z) \in C$, then $g(z) = z(f'(z))^\alpha \in S_{t^*}$ for $0 < \alpha \leq 1/2$. The converse is true for $\alpha = 1/2$.

Proof. \(\text{Re}\left\{ \frac{zg'(z)}{g(z)} \right\} = \text{Re}\left\{ 1 + \alpha \frac{zf''(z)}{f'(z)} \right\} \geq 1 - \alpha \geq 1/2 \). For
the converse we have: \(\text{Re}\left\{ \frac{zf''(z)}{f'(z)} \right\} + 1 = \text{Re}\left\{ 2zf'(z)/g(z) \right\} - 1 \geq 0 \).
This should be compared with the well known result that if $f(z) \in C$
then $g(z) = zf'(z) \in S_t$ and conversely.

Corollary 2.2. Let \(|b_i| = 1 \) and \(\sum_{i=1}^{n} \mu_i \leq 1, \mu_i \geq 0 \), then $w = g(z)$
\[z \prod_{i=1}^{n} (1 - b_i z)^{-\mu_i} \in S_{t^*}. \]

Proof. \(f(z) = \int_0^\infty \prod_{i=1}^{n} (1 - b_i z)^{-v_i} dt \in C \) if \(v_i \geq 0 \) and \(\sum_{i=1}^{n} v_i \leq 2, \)
\(|b_i| = 1 \). The corollary follows if we let $\alpha = 1/2$ in Theorem 2.1.

Theorem 2.3. If $w = f(z) \in S_t$, then $g(z) = z\left\{\frac{f'(z)}{f(z)}\right\}^\alpha \in S_{t^*}$ for
\[0 < \alpha \leq 1/2. \] The converse is true for $\alpha = 1/2$.

Proof. \(\text{Re}\left\{ \frac{zg'(z)}{g(z)} \right\} = \text{Re}\left\{ \alpha zf'(z)/f(z) + 1 - \alpha \right\} \geq 1 - \alpha \geq 1/2. \)
For the converse we have: \(\text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} = \text{Re}\left\{ 2zf'(z)/g(z) - 1 \right\} \geq 0 \). (Marx [4] has the above theorem for $\alpha = 1/2$.)

The method of Theorem 2.3 for constructing functions of class
S_{t^*} gives some insight into the geometrical nature of the region onto
which the unit circle is mapped by functions of class S_{t^*}. If $z = re^{i\theta}$ is
mapped by $w = f(z) \in S_t$ into $\text{Re} e^{i\psi}$, then a comparison of r and R and
θ and ϕ tells us about the amount of distortion. We notice that
$g(z) = \left\{\frac{zf(z)}{r} \right\}^{1/2} \in S_{t^*}$ reduces the amount of distortion effected by
$f(z) \in S_t$ by an “averaging” process, i.e. $z = re^{i\theta}$ will be mapped by $g(z)$
into $pe^{i\psi}$ where $p = (rR)^{1/2}$ and $\psi = (\theta + \phi)/2$.

3. Distortion theorems for functions of class S_{t^*}.

Theorem 3.1. For all $g(z) \in S_{t^*}$ we have $|z|/(1 + |z|) \leq |g(z)|$,$\leq|z|/(1 - |z|)$.
Proof. By Theorem 2.3 ($\alpha=1/2$) and the “Verzerrungs Satz” we have: $|z|/(1+|z|)^2 \leq \left| g(z)/z \right| \leq |z|/(1-|z|)^2$ and hence the Theorem follows. These inequalities are sharp for $g(z) = z/(1+z) \in \text{St}^*$, $z = \pm r$.

Theorem 3.2. For all $g(z) \in \text{St}^*$ the domain of values of $z g'(z)/g(z)$ is the circle with center at $1/(1-|z|^2)$ and radius $|z|/(1-|z|^2)$.

Proof. Let

$$G(z) = z g'(z)/g(z) - 1/2$$

and

$$H(z) = (2G(z) - 1)/(2G(z) + 1) = \left| z g'(z)/g(z) - 1 \right|/\left| z g'(z)/g(z) \right|.$$

Then $H(z)$ is regular for $|z| < 1$, $H(0) = 0$ and $|H(z)| < 1$ for $|z| < 1$. Hence the Lemma of Schwarz can be applied and we have for $|z| < 1$

$$\left| \frac{z g'(z)}{g(z)} - 1 \right| < |z| \quad \text{or} \quad \left| \frac{z g'(z)}{g(z)} \right| - 1 < |z| \left| \frac{z g'(z)}{g(z)} \right|.$$

But the domain defined by this inequality is the interior of the Circle of Apollonius with the line segment from $1/(1+|z|)$ to $1/(1-|z|)$ as a diameter, i.e. the interior of the circle with radius $|z|/(1-|z|^2)$ and center at $1/(1-|z|^2)$. The function $f(z) = z/(1+z) \in \text{St}^*$ shows that the theorem cannot be improved.

4. Some coefficient relations. It is well known that if $f(z) \in \text{St}$ then $|a_n| \leq n$. For functions of class St^* we have:

Theorem 4.1. If $f(z) = z + \sum_{n=1}^{\infty} a_n z^n \in \text{St}^*$, then $|a_n| \leq 1$.

Proof. Let $p(z) = 2z f'(z)/f(z) - 1 = 1 + c_1 z + c_2 z^2 + \cdots$. Since $p(z)$ is regular and $\Re\{p(z)\} > 0$ for $|z| < 1$, therefore, by a well known lemma we have $|c_n| \leq 2$ for $n = 1, 2, 3, \cdots$.

Comparing coefficients we obtain $2(n-1)a_n = c_{n-1} + a_2 c_{n-2} + \cdots + a_{n-1} a_2$, and hence: $|a_n| \leq 1/(n-1) \{1 + |a_2| + \cdots + |a_{n-1}| \}$. It follows now by induction that $|a_n| \leq 1$ for $n = 1, 2, 3, \cdots$.

The function $f(z) = z/(1+z) = \sum_{n=1}^{\infty} z^n \in \text{St}^*$ shows that these inequalities are sharp.

For some kind of a converse we have:

Theorem 4.2. If $g(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and if $\sum_{n=2}^{\infty} (2n-1)|a_n| \leq 1$ then $g(z) \in \text{St}^*$.

Proof. The proof is based on a method used by A. Goodman [3]. We have:
\[
\frac{zg'(z)}{g(z)} - \frac{1}{2} = \frac{1 + 3a_2z + 5a_3z^2 + \cdots + (2n - 1)a_nz^{n-1} + \cdots}{2(1 + a_2z + a_3z^2 + \cdots + a_nz^{n-1} + \cdots)} = \frac{1}{2} + \sum_{n=1}^{\infty} b_nz^n
\]

where

\[b_1 = a_2, \]
\[b_2 = 2a_3 - a_2b_1, \]
\[b_3 = 3a_4 - a_2b_2 - a_3b_1, \]
\[\vdots \]
\[b_{n-1} = (n - 1)a_n - a_2b_{n-2} - a_3b_{n-3} - \cdots - a_{n-1}b_1, \]

and therefore for \(n \geq 2 \)

\[
\sum_{k=1}^{n-1} b_k = \sum_{k=2}^{n} (k - 1)a_k - a_2\sum_{k=1}^{n-2} b_k - a_3\sum_{k=1}^{n-3} b_k - \cdots - a_n b_1. \quad (4.5)
\]

The inequality of the theorem implies that \(|b_1| = |a_2| \leq 1/3 \). It will now be shown by mathematical induction that for all \(n \) we have \(|\sum_{k=1}^{n} b_k| \leq 1/2 \). Assume that \(|\sum_{k=1}^{m} b_k| \leq 1/2 \) for \(m = 1, 2, 3, \cdots, n-2 \). Then (4.5) yields

\[
\left| \sum_{k=1}^{n-1} b_k \right| \leq \sum_{k=2}^{n} (k - 1)|a_k| + \frac{1}{2} \sum_{k=2}^{n-1} |a_k| \leq \sum_{k=2}^{n} (k - 1/2)|a_k| \leq 1/2
\]

by the inequality of the theorem, and hence \(|\sum_{k=1}^{n} b_k| \leq 1/2 \) for all \(n \). From (4.3) it follows now that

\[
|zg'(z)/g(z) - 1| \leq 1/2 \text{ for } z = r. \quad (4.7)
\]

But the inequality of Theorem 4.2 and the special starshapedness of the image domain are invariant under rotations of the \(z \) and \(w \) planes. Hence any point in the unit circle may be placed in the interval \([0, 1]\), and thus (4.7) is valid throughout the unit circle i.e.

\[\text{Re} \left\{ zg'(z)/g(z) \right\} \geq 1/2 \text{ for } |z| < 1. \]

Corollary 4.8. Let \(g(z) = z - \sum_{n=2}^{\infty} a_nz^n \), where all \(a_i \geq 0 \), then \(g(z) \in \text{St}^* \), if and only if \(\sum_{n=2}^{\infty} (2n-1)a_n \leq 1. \)
Proof. The sufficiency of the condition follows from the Theorem. For the necessity we have:

\[\text{Re} \left\{ \frac{z g'(z)}{g(z)} - \frac{1}{2} \right\} = \text{Re} \left\{ \frac{1 - \sum_{n=2}^{\infty} (2n - 1)a_n z^{n-1}}{2 \left(1 - \sum_{n=2}^{\infty} a_n z^{n-1} \right)} \right\}. \]

If \(\sum_{n=2}^{\infty} (2n - 1)a_n > 1 \), then we could find a positive value of \(z, r_0 \), for which the numerator of (4.9) would be negative and the denominator positive and hence \(\text{Re} \left\{ \frac{zg'(z)}{g(z)} \right\} < 1/2 \) for that value of \(z \) and all positive values of \(z > r_0 \). (See also [7].)

5. The radius of special star shapedness. We define the radius of special star shapedness, \(r^* \), as the upper bound of the radii, \(r \), of circles \(|z| \leq r \), which are mapped by any function \(f(z) \in S \) onto a region of special star shapedness, i.e. that for all functions \(f(z) \in S \) we have \(\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq 1/2 \) for all \(|z| \leq r \). From the introduction it follows that \(r^* \) is larger than the bound of convexity (Rundungsschranke) and less than the bound of starlikeness. Therefore

\[2 - 3^{1/2} = .268 \cdots \leq r^* \leq .65 \cdots = \tanh \pi/4. \]

We have:

Theorem 5.2. \(r^* = 1/3 \) for all \(f(z) \in St \), and hence \(r^* \leq 1/3 \).

Proof. By [5] we have for any \(f(z) \in St \)

\[\frac{1 - |z|}{1 + |z|} \leq \text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \leq \frac{1 + |z|}{1 - |z|}. \]

Therefore \(\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq (1 - |z|)/(1 + |z|) \geq 1/2 \) for all \(|z| \leq 1/3 \). This result is sharp for \(f(z) = z(1+z)^{-2} \in St \) and \(z = 1/3 \).

Theorem 5.3. A lower bound for \(r^* \) is: \(r^* > .301 \cdots \).

Proof. If we let

\[g(z) = f^{-1/2}(z^{-2}) = z + b_1/z + b_3/z^3 + \cdots + b_{2n-1}/z^{2n-1} + \cdots \]

then by Bieberbach's Flächensatz [1] we have

\[\sum_{n=1}^{\infty} (2n - 1) |b_{2n-1}|^2 \leq 1. \]

The condition \(\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq 1/2 \) is equivalent to
(5.6) \[\left| \frac{zf'(z)}{f(z)} \right| \leq \left| \frac{zf'(z)}{f(z)} - 1 \right| \]

i.e. by (5.4)

\[\left| \frac{z^{-1/2}g'(z^{-1/2})}{g(z^{-1/2})} \right| \leq \left| \frac{z^{-1/2}g'(z^{-1/2})}{g(z^{-1/2})} - 1 \right| \]

or:

\[\left| \frac{1 - b_1 z - 3b_3 z^2 - \cdots - (2n - 1)b_{2n-1} z^n}{1 + b_1 z + b_3 z^2 + \cdots + b_{2n-1} z^n} \right| \leq \left| \frac{1 - b_1 z - 3b_3 z^2 - \cdots - (2n - 1)b_{2n-1} z^n + \cdots}{1 + b_1 z + b_3 z^2 + \cdots + b_{2n-1} z^n + \cdots} - 1 \right| \]

(5.7)

or:

\[\left| 1 - b_1 z - 3b_3 z^2 - \cdots - (2n - 1)b_{2n-1} z^n \right| \geq 2 \left| b_1 z + 2b_3 z^2 + 3b_5 z^3 + \cdots + nb_{2n-1} z^n + \cdots \right| . \]

A sufficient condition for this inequality to be satisfied is that

\[1 - \left| b_1 \right| r - 3 \left| b_3 \right| r^2 - \cdots - (2n - 1) \left| b_{2n-1} \right| r^n + \cdots \]

\[\geq 2 \left| b_1 \right| r + 4 \left| b_3 \right| r^2 + \cdots \]

or:

\[3 \left| b_1 \right| r + 7 \left| b_3 \right| r^2 + 11 \left| b_5 \right| r^3 + \cdots \]

\[+ (4n - 1) \left| b_{2n-1} \right| r^n + \cdots \leq 1 \]

or

\[2 \left\{ \left| b_1 \right| r + 3 \left| b_3 \right| r^2 + \cdots + (2n - 1) \left| b_{2n-1} \right| r^n + \cdots \right\} \]

\[+ \left\{ \left| b_1 \right| r + \left| b_3 \right| r^2 + \cdots + \left| b_{2n-1} \right| r^n + \cdots \right\} \leq 1 . \]

(5.8)

If in the first parenthesis of inequality (5.8) welet \(c_n = (2n - 1)^{1/2} \left| b_{2n-1} \right| \)

and \(d_n = (2n - 1)^{1/2} \cdot r^n \) then the Inequality of Schwarz

\[\sum c_n \cdot d_n \leq \left(\sum c_n^2 \right)^{1/2} \cdot \left(\sum d_n^2 \right)^{1/2} \]

gives

\[\left| b_1 \right| r + 3 \left| b_3 \right| r^2 + \cdots + (2n - 1) \left| b_{2n-1} \right| r^n + \cdots \]

(5.9)

\[\leq \left(\left| b_1 \right|^2 + 3 \left| b_3 \right|^2 + \cdots + (2n - 1) \left| b_{2n-1} \right|^2 + \cdots \right)^{1/2} \]

\[\cdot (r^2 + \cdots + (2n - 1) r^{2n} + \cdots)^{1/2} \]

and therefore by (5.5)
Similarly, if in the second parenthesis of inequality (5.8) we let
c_n=(2n-1)^{1/2}|b_{2n-1}|, d_n=r^n(2n-1)^{-1/2}
and apply the Inequality of Schwarz again, we get:
\[
\left| b_1 \right| r + \left| b_3 \right| r^2 + \cdots + \left| b_{2n-1} \right| r^n + \cdots \\
\leq \left(\left| b_1 \right|^2 + 3 \left| b_3 \right|^2 + \cdots + (2n-1) \left| b_{2n-1} \right| + \cdots \right)^{1/2} \\
\cdot \left(r^2 + \frac{r^4}{3} + \cdots + \frac{r^{2n}}{2n-1} + \cdots \right)^{1/2}
\]
and again by (5.5)
\[
\left| b_1 \right| r + \left| b_3 \right| r^2 + \cdots + \left| b_{2n-1} \right| r^n + \cdots \\
\leq \left(r^2 + \frac{r^4}{3} + \cdots + \frac{r^{2n}}{2n-1} + \cdots \right)^{1/2} = \left(\frac{r}{2} \ln \frac{1+r}{1-r} \right)^{1/2}.
\]
Substituting (5.10) and (5.12) into (5.8) we have:
\[
\frac{2r(1 + r^2)^{1/2}}{1 - r^2} + \left(\frac{r}{2} \log \frac{1+r}{1-r} \right)^{1/2} < 1.
\]
This will be satisfied for \(|z| = r < .301 \cdots \), i.e. \(r^* > .301 \cdots \).

Bibliography