ON A CLASS OF UNIVERSAL ORDERED SETS

ELLIOTT MENDELSON

An ordered set B is said to be \aleph_α-universal if and only if every ordered set of power \aleph_α is similar to a subset of B. Let U_{ω_α} be the lexicographically ordered set of all sequences of 0's and 1's of type ω_α; and let H_α be the subset of U_{ω_α} consisting of all sequences \(\{x_\xi\}_{\xi<\omega_\alpha} \) for which there is some $\xi_0<\omega_\alpha$ such that $x_{\xi_0}=1$ and, for $\xi>\xi_0$, $x_\xi=0$.

H_0, being countable, dense, and without first or last element, is similar to the set of rationals in their natural order, and therefore, is \aleph_0-universal. Sierpiński [2] has shown (as a direct consequence of his theorem that $H_{\alpha+1}$ is an $\eta_{\alpha+1}$-set) that, for any α, $H_{\alpha+1}$ is $\aleph_{\alpha+1}$-universal. Gillman [1] has given a demonstration that, for any limit ordinal α, H_α is \aleph_α-universal. The purpose of this note is to give a very simple proof of these results, which does not depend on the ordinal α.

Theorem. H_α is \aleph_α-universal.

Proof. Let A be an ordered set of power \aleph_α. Fix some well-ordering $\{a_\beta\}_{\beta<\omega_\alpha}$ of A. Let $<$ denote the order in A. Define a function ϕ from A into H_α in the following way. Let a_τ be an element of A, and $\beta<\omega_\alpha$. Then the βth component $\phi_\beta(a_\tau)$ of $\phi(a_\tau)$ is defined by:

\[
\phi_\beta(a_\tau) = \begin{cases}
1 & \text{if } \beta \leq \tau \text{ and } a_\beta \leq a_\tau, \\
0 & \text{otherwise}.
\end{cases}
\]

Now, let a_τ and a_σ be any elements of A, with $a_\tau < a_\sigma$. Clearly, if $\beta \leq \sigma$, $\phi_\beta(a_\sigma) = \phi_\beta(a_\tau)$. But, $\phi_\sigma(a_\sigma) = 1$ and $\phi_\sigma(a_\tau) = 0$. Hence, $\phi(a_\tau)$ pre-
cedes \(\phi(a_\alpha) \) in \(H_\alpha \). Thus, \(\phi \) is a one-one order-preserving mapping of \(A \) into \(H_\alpha \). Q.E.D.

Note that \(H_0 \) is \(\aleph_0 \)-universal and of power \(\aleph_0 \). Since \(\aleph_{\alpha+1} = 2^{\aleph_\alpha} \), \(\aleph_{\alpha+1} \) is of power \(\aleph_\alpha \) if and only if \(2^{\aleph_\alpha} = \aleph_{\alpha+1} \). Finally, for limit ordinals \(\alpha \), \(\aleph_\alpha = \sum_{\beta < \alpha} 2^{\aleph_\beta} \), and, therefore, \(H_\alpha \) is of power \(\aleph_\alpha \) if and only if, for every \(\beta < \alpha \), \(2^{\aleph_\beta} \leq \aleph_\alpha \) (and, hence, if \(2^{\aleph_\beta} = \aleph_{\beta+1} \) for all \(\beta < \alpha \)). For \(\alpha > 0 \), it seems to be an open problem to prove, without additional cardinality assumptions, the existence of an \(\aleph_\alpha \)-universal ordered set of power \(\aleph_\alpha \).

Bibliography

Harvard University