ON THE ITERATION OF TRANSFORMATIONS IN
NONCOMPACT MINIMAL DYNAMICAL SYSTEMS

FELIX E. BROWDER

Let A be a Hausdorff space, ϕ a continuous mapping of A into itself. It is the purpose of the present paper to discuss various topics centering around the following question: If g is a bounded continuous function on A, does there exist a bounded continuous function f on A such that $f(\phi a) - f(a) = g(a)$ for all a in A? Suppose that for each a_0 in A, the set $\{\phi^n a_0, n \geq 0\}$ is dense in A. Theorem 1 asserts that a necessary and sufficient condition for the existence of such an f is that $\left| \sum_{k=0}^{j} g(\phi^k a) \right|$ should be uniformly bounded for all positive j and all points a of A. For homeomorphisms of compact spaces, this result was previously obtained by Gottschalk and Hedlund [5, Theorem 14.11, p. 135].

A related problem for linear operators in a Banach space is obtained by letting X be the Banach space of bounded continuous functions on A with the uniform norm, T the linear transformation of X into itself defined by $(Tf)(a) = f(\phi a)$, $a \in A$. In terms of X and T, Theorem 1 states that g will lie in the range of $(I - T)$ if and only if the sequence of norms $\left\| \sum_{k=0}^{j} T^k g \right\|$ is uniformly bounded for all positive j. In a reflexive Banach space, this characterization of the range of $(I - T)$ is valid for any linear transformation T for which $\left\| T^n \right\|$ is bounded for all n. A sufficient condition in a general Banach space would seem to require an assumption that the elements $\{\sum_{k=0}^{j} T^k g\}$ lie for all j in a fixed weakly compact subset K of X. It would be interesting to obtain a proof of Theorem 1 along these lines. We shall content ourselves with showing by these methods that if m is a totally-finite measure on a σ-algebra on A, $L^\infty(m)$ the space of m-essentially bounded measurable functions, ϕ a measure preserving mapping of A into A, then in order that for an element g in $L^\infty(m)$, there should exist an f in $L^\infty(m)$ such that $f(\phi a) - f(a) = g(a)$ a.e. in m, it is necessary and sufficient that m-ess. sup. $\left| \sum_{k=0}^{j} g(\phi^k a) \right|$ should be uniformly bounded for all positive j.

Such a result raises another sort of question. For a topological space A if g is continuous and f is a solution of the equation $f(\phi a)$
$-f(a) = g(a)$, with f lying in some larger class of functions, must f be necessarily continuous after change on some negligible set? We place the question in a more definite setting. Let A_1 be a Hausdorff space, A_2 a compact topological group, ϕ a homeomorphism of A_1 onto itself such that A_1 is a minimal orbit closure under ϕ, ψ_0 a continuous map of A_1 into A_2. Suppose there exists a Baire function h from A_1 to A_2 satisfying the relation

$$h(\phi a) = \psi_0(a_1) \cdot h(a_1),$$

for all a_1 outside some set of the first category in A_1. Then if A_1 is a Baire space, h is continuous after change on a set of the first category.

A similar result is valid if A_2 is merely a compact space, ψ_0 a homeomorphism of A_2 onto itself which generates an equicontinuous transformation group of A_2, and (1) is replaced by

$$h(\phi a) = \psi_0(ha_1).$$

In this form, the result has been established by S. Kakutani in [7] by rather different methods. One interesting feature of the present proof is that it is valid also under the following hypotheses: A_1 a measure space with a measure m such that all open sets are measurable and have positive measure, ϕ maps null sets on null sets, h a function from A_1 to A_2 continuous on the complement of a set of zero measure. Then h is continuous on the whole of A_1 after replacement on a set of measure zero. An extension is given for functional equations of a more general type than (1)'.

1: Let A be a Hausdorff space, ϕ a continuous mapping of A into itself. We assume that A is a minimal orbit closure under ϕ, i.e., for every a_0 in A, the closure of the set $\{\phi^n a_0, n \geq 0\}$ coincides with A. Let B be another Hausdorff space, ψ a continuous mapping of the Cartesian product $A \times B$ into B.

We define a continuous mapping π of $A \times B$ into itself by setting $\pi(a, b) = (\phi a, \psi(a, b))$. If π^n is the nth iterate of π, $O(a, b)$ is the orbit of (a, b) under the mapping π, i.e. $O(a, b) = \bigcup_{n \geq 0} \{\pi^n(a, b)\}$, then we let $F(a, b)$ be the closure of $O(a, b)$ in $A \times B$. Let p_A and p_B be the projection mappings of $A \times B$ on its first and second components respectively, $p_A(a, b) = a$, $p_B(a, b) = b$. We shall assume in the following that for each point (a, b) in $A \times B$, $p_B(F(a, b))$ is contained in a compact subset of B.

Consider the family J of subsets of $A \times B$, where $J = \{F | F$ is a nonempty closed subset of $A \times B; (a, b) \in F$ implies that $\pi(a, b) \in F; p_B(F)$ is contained in a compact subset of $B}\}$. Since for any point
Lemma 1. If $F \in J$, then $p_A(F) = A$.

Proof. Let (a_0, b_0) be a point of F. Since $\pi^n(a_0, b_0) \in F$, $p_A \pi^n(a_0, b_0) \in p_A(F)$. Thus $p_A(F)$ contains the dense set $\{ \phi^n a_0 \}$ and therefore is dense in A. On the other hand, F is closed in $A \times B$, $F \subseteq A \times \text{Cl}(p_B(F))$, and $\text{Cl}(p_B(F))$ is compact in B. Therefore, $p_A(F)$ is closed in A [1, Exercise 8, p. 68]. Since $p_A(F)$ is dense and closed in A, $p_A(F) = A$.

Lemma 2. J has a minimal element under inclusion. Every orbit closure $F(a, b)$ contains a minimal element of J.

Proof. By the Lemma of Zorn, it suffices to prove that every subfamily of J which is linearly ordered with respect to inclusion has a lower bound in J. Let $L = \{ F_\alpha \}$ be such a family. Then $F_0 = \bigcap_\alpha F_\alpha$ is a closed invariant set under π while $p_B(F_0)$ is certainly contained in a compact subset of B. To prove that $F_0 \subseteq J$, we must show $F_0 \neq \emptyset$. Let a_0 be a point of A, $G_\alpha = F_\alpha \cap p_A^{-1}(a_0)$. By Lemma 1, G_α is a family of closed sets in $A \times B$ such that every finite subfamily has a nonempty intersection. Moreover, each G_α is a closed subset of $a_0 \times \text{Cl}(p_B(F_\alpha))$, which is compact since it is mapped homeomorphically by p_B on the compact set $\text{Cl}(p_B(F_\alpha))$. Since all the G_α are compact, $G_0 = \bigcap_\alpha G_\alpha$ is nonempty, and, since $G_0 \subseteq F_0$, F_0 is nonempty.

Let ξ be a homeomorphism of B onto itself commuting with ψ, i.e. such that $\psi(a, \xi b) = \xi \psi(a, b)$ for all $a \in A$, $b \in B$. Let S_ξ be the homeomorphism of $A \times B$ onto itself defined by $S_\xi(a, b) = (a, \xi b)$.

Lemma 3. Let F_0 be a minimal element of J and suppose that for a fixed point a in A, the points (a, b) and (a, b_1) lie in F. Suppose further that there exists a homeomorphism ξ of B onto B commuting with ψ, such that $\xi b = b_1$. Then $S_\xi F_0 = F_0$.

Proof. From the fact that ξ commutes with ψ, we see that $S_\xi \pi(a, b) = (\phi a, \xi \psi(a, b)) = (\phi a, \psi(a, \xi b)) = \pi S_\xi(a, b)$. Thus $S_\xi \pi^n = \pi^n S_\xi$, and $S_\xi (O(a, b)) = O(a, \xi b)$. Since S_ξ is a homeomorphism, $S_\xi F(a, b) = F(a, \xi b)$. Since F_0 is a minimal element of J, $F_0 = F(a, b) = F(a, b_1)$. But $S_\xi F_0 = S_\xi F(a, b) = F(a, \xi b) = F(a, b_1) = F_0$.

Theorem 1. Let ϕ be a continuous mapping of the Hausdorff space A into itself with A a minimal orbit closure under ϕ. Let g be a bounded continuous function from A to the n-dimensional Euclidean space R^n. In order that there should exist a bounded continuous function f from A to R^n such that $f(\phi a) - f(a) = g(a)$ for all a in A, it is necessary and
sufficient that there exist a constant \(M > 0 \) with

\[
(2) \quad \sup_{a \in A} \left| \sum_{k=0}^{j} g(\phi^k a) \right| \leq M \text{ for all } j \geq 0.
\]

Proof of Theorem 1. Necessity is obvious for if \(g(a) = f(\phi a) - f(a) \), then \(|\sum_{k=0}^{j} g(\phi^k a)| = |f(\phi^{j+1} a) - f(a)| \leq 2 \sup |f(a)| \).

To prove sufficiency, we specialize our preceding discussion by taking \(B = \mathbb{R}^n \) and setting \(\psi(a, r) = r + g(a) \) for \(a \in A, r \in \mathbb{R}^n \). The corresponding mapping \(\pi \) is defined by \(\pi(a, r) = (\phi a, r + g(a)) \). The condition (2) is equivalent to the fact that the orbit of any point \((a, r) \) under \(\pi \) has a bounded and hence precompact image in \(\mathbb{R}^n \) under the projection map \(\rho_{\mathbb{R}^n} \) of \(A \times \mathbb{R}^n \) into \(\mathbb{R}^n \). Hence the conclusions of Lemmas 1, 2, and 3 are valid for this mapping \(\pi \). Let \(F_0 \) be a minimal closed invariant set in \(A \times \mathbb{R}^n \) with respect to \(\pi \). Suppose that for some point \(a \) in \(A \), \(\rho_{\mathbb{R}^n}^{-1}(a) \cap F_0 \) contained two distinct points \((a, r), (a, r_1) \). Let \(\xi = r - r_1 \), the homeomorphism of \(\mathbb{R}^n \) onto itself defined by \(\xi(r) = r + \xi \). Then \(\xi \) commutes with \(\psi, \xi(r_1) = r \), and Lemma 3 is applicable. Thus if \(S_\xi(a, r) = (a, r + \xi), S_\xi F_0 = F_0 \). But then \(S_m^{\xi} F_0 = F_0 \) for any positive integer \(m \), contradicting the boundedness of the second component for elements of \(F_0 \). Thereby, we have shown that \(F_0 \) has at most one point \((a, r) \) for a given \(a \in A \).

Let \(f \) be the function from \(A \) to \(\mathbb{R}^n \) defined uniquely by the condition \((a, f(a)) \in F_0 \). By Lemma 1, \(f \) is defined on all of \(A \). \(f \) can be considered as a function from \(A \) to the compact set \(\text{Cl}(\rho_{\mathbb{R}^n} F_0) \). Since \(F_0 \), the graph of \(f \), is closed, \(f \) is continuous [1, Exercise 12, p. 68]. Since \(\pi(a, f(a)) \in F_0 \), we have \((\phi a, f(a) + g(a)) \in F_0 \), i.e. \(f(\phi a) = f(a) + g(a) \).

Remark. Following a remark of Kakutani, we note that the existence of a minimal subset in \(J \) under the hypotheses of Theorem 1 can be proved in an elementary way without the use of Zorn’s Lemma or the Axiom of Choice. Let \(F_0 = F(a_0, r_0) \) for a fixed element \((a_0, r_0) \) in \(A \times \mathbb{R}^n \). We shall show that \(F_0 \) is a minimal element of \(J \). It suffices to show that if \((a, r) \in F_0 \), then \((a_0, r_0) \in F(a, r) \). We note first that if \((a_0, r_1) \in F_0 \), and \(\xi = r_1 - r_0 \), then \(S_\xi F_0 = S_\xi F(a_0, r_0) = F(a_0, r_1) \subseteq F_0 \). If \(\xi \neq 0 \), then \(S_\xi^m F_0 \subseteq F_0 \) for all \(m > 0 \), contradicting (2). Thus \(\xi = 0 \) and \((a_0, r_0) \) is the only point in \(\rho_A^{-1}(a_0) \cap F_0 \). But \(\rho_A^{-1}(a_0) \cap F(a, r) \) is contained in \(\rho_A^{-1}(a_0) \cap F_0 \) and is nonempty by Lemma 1. It follows that \((a_0, r_0) \in F(a, r) \) and \(F_0 \) is minimal.

2. Let \(X \) be a Banach space, \(T \) a continuous linear transformation of \(X \) into itself.

Lemma 4. A sufficient condition for \(g \) in \(X \) to lie in the range of
\[(I-T)\text{ is that the set of elements } \{ \sum_{k=0}^{j-1} T^k g \}\text{ should lie for } j \geq 0 \text{ in a fixed weakly compact subset } K \text{ of } X.\]

Proof. By theorems of Eberlein and M. Krein (cf. \([4]\)), the convex closure \(K'\) of \(K \cup \{0\}\) is weakly sequentially compact. By the principle of uniform boundedness, there exists \(M > 0\) such that \(\left\| \sum_{k=0}^{j-1} T^k g \right\| \leq M\) for \(j \geq 0\). Thus if we set \(g_n = g - n^{-1} \sum_{k=0}^{j-1} T^k g\), then \(g_n\) will converge strongly to \(g\) as \(n \to \infty\). Furthermore, each \(g_n\) lies in the range of \((I-T)\) since \(g_n = (I-T) \left\{ n^{-1} \sum_{k=0}^{j-1} (\sum_{k=0}^{j-1} T^k g) \right\}\). Let us set \(h_k = \sum_{k=0}^{j-1} T^k g, f_n = \{ \sum_{k=0}^{j-1} h_j \} \cdot n^{-1}\). Then \(g_n = (I-T)f_n\), while the \(f_n\) lie for all \(n\) in the weakly sequentially compact set \(K'\). Choose a subsequence \(f_{n_i}\) converging weakly to an element \(f\) of \(X\) as \(i \to \infty\). Then \((I-T)f_{n_i}\) converges weakly to \((I-T)f\). But \(g_{n_i} = (I-T)f_{n_i}\) converges strongly to \(g\). Hence \(g = (I-T)f\).

Lemma 5. Let \(X\) be a reflexive Banach space, \(T\) a continuous linear transformation of \(X\) into itself. A sufficient condition that \(g\) lie in the range of \((I-T)\) is that \(\left\| \sum_{k=0}^{j-1} T^k g \right\|\) be uniformly bounded for \(j \geq 0\). If \(\left\| T^n \right\| \leq M'\) for \(n \geq 0\), the condition is also necessary.

Proof. The necessity is obvious, since if \(g = (I-T)f\), \(\left\| \sum_{k=0}^{j-1} T^k g \right\| = \left\| f - T^{i+1}f \right\| \leq 2M'\). Sufficiency follows from Lemma 4 since every closed ball about zero in a reflexive space is weakly compact.

Theorem 2. Let \(A\) be a measure space with a totally finite measure \(m\), \(\phi\) a measure preserving mapping of \(A\) into \(A\). In order that for a function \(g\) in \(L^{\infty}(m)\), there should exist an \(f \in L^{\infty}(m)\) such that \(f(\phi a) - f(a) = g(a)\) a.e. in \(m\), it is necessary and sufficient that

\[
\text{m-ess. sup. } \left| \sum_{k=0}^{j} g(\phi^k a) \right|
\]

should be uniformly bounded for \(j \geq 0\).

Proof of Theorem 2. Choose a value of \(p, 1 < p < \infty\). Let \(T\) mapping \(L^p(m)\) into itself be defined by \((Tf)(a) = f(\phi a), a \in A\). Then \(\left\| Tf \right\|_{L^p} = \left\| f \right\|_{L^p}\), while \(\left\| f \right\|_{L^p} \leq m(A)^{1/p} \left\| f \right\|_{L^\infty}\) for \(f \in L^p \cap L^\infty\). Since necessity is obvious, we consider only sufficiency. Let \(g\) be our given function from \(L^\infty\). Since \(\left\| \sum_{k=0}^{j-1} T^k g \right\|_{L^p} \leq m(A)^{1/p} \left\| \sum_{k=0}^{j-1} T^k g \right\|\) which is uniformly bounded for \(j \geq 0\), applying Lemma 5 to the reflexive space \(L^p(m)\), we conclude that there exists \(f_0 \in L^p(m)\) such that \(f_0(\phi a) - f_0(a) = g(a)\). Since the mean ergodic theorem holds for \(T\) in the reflexive space \(L^p(m)\), \([8]\) the ergodic means \(n^{-1} \sum_{j=0}^{n-1} T^j f_0\) converges to an element \(f_1\) of \(L^p(m)\) in the strong topology of \(L^p(m)\) and \((I-T)f_1 = 0\). Let \(f = f_0 - f_1\). Then \(f(\phi a) - f(a) = g(a)\) a.e. while \(n^{-1} \sum_{j=0}^{n-1} T^j f \to 0\) in \(L^p(m)\) as \(n \to \infty\). Set \(h_n = n^{-1} \sum_{j=0}^{n-1} \sum_{k=0}^{j-1} T^k g\).
Then \(\|h_n\|_{L^\infty} \) are uniformly bounded for \(h_n = f - n^{-1} \sum_{j=1}^n T \) if converges in \(L^p(m) \) to \(f \) as \(n \to \infty \). Choosing a subsequence which converges to \(f \) a.e., it follows that \(f \in L^\infty(m) \).

3. Let \(A_1 \) and \(A_2 \) be two Hausdorff spaces, with \(A_1 \) a Baire space, i.e. of the second category on itself. Let \(\phi \) be a homeomorphism of \(A_1 \) onto itself such that \(A_1 \) is a minimal orbit closure under \(\phi \). Let \(\psi \) be a continuous mapping from \(A_1 \times A_2 \) into \(A_2 \). We shall consider functions \(h \) from \(A_1 \) to \(A_2 \) which satisfy the condition

\[
(3) \quad h(a_1) = \psi(a_1, h(a_1)), \quad a_1 \in A_1.
\]

The function \(h \) will be said to be a Baire function if there exists a set \(S \) of the first category in \(A_1 \) such that \(h \) is a continuous mapping of \(A_1 - S \) into \(A_2 \). If \(A_2 \) is a metric space, this definition includes all functions obtained by a sequence of pointwise sequential limits starting with continuous functions [2, Exercise 14, p. 81].

A family \(H \) of homeomorphisms of \(A_2 \) is said to be universally transitive if for every pair of distinct points \(a_2, a'_2 \) in \(A_2 \) there is a \(\xi \) in \(H \) such that \(\xi a_2 = a'_2 \).

Theorem 3. Let \(h \) be a Baire function from \(A_1 \) to \(A_2 \) for which (3) holds outside some set \(S_1 \) of first category in \(A_1 \). Suppose that \(A_2 \) is compact and that there exists a universally transitive family \(H \) of homeomorphisms of \(A_2 \), each of which has no fixed points and commutes with \(\psi \). Then after change on a set of the first category in \(A_1 \), \(h \) can be made into a continuous function from \(A_1 \) to \(A_2 \) satisfying (3) for all \(a_1 \) in \(A_1 \).

Proof. Let \(S_0 = \bigcup_{n \geq 0} \{ \phi^n(S) \cup \phi^n(S_1) \} \). Since \(\phi \) is a homeomorphism, \(S_0 \) is of first category in \(A_1 \). \(A_1 - S_0 \) is an invariant set with respect to \(\phi \) and dense in \(A_1 \), \(h \) is continuous from \(A_1 - S_0 \) to \(A_2 \), and (3) holds for all \(a_1 \) in \(A_1 - S_0 \). If we set \(B = A_2 \) in the discussion of §1 and \(\pi(a_1, a_2) = (\phi a_1, \psi(a_1, a_2)) \), the results of Lemmas 1, 2, and 3 are valid for \(\pi \). Let \(a'_1 \) be a point of \(A_1 - S_0 \), \(a'_2 = h(a'_1) \), \(F_0 \) a minimal invariant set contained in \(F(a'_1, a'_2) \). The condition (3) on \(h \) in \(A_1 - S_0 \) implies since \(h \) is continuous on \(A_1 - S_0 \), that if \(G \) is the graph of \(h \) on \(A_1 - S_0 \), then \(G = F(a'_1, a'_2) \cap \pi_{a_1}^{-1}(A_1 - S_0) \). We shall show that \(F_0 = F(a'_1, a'_2) \) and that for each \(a_1 \) in \(A_1 \), \(\pi_{a_1}^{-1}(a_1) \cap F_0 \) consists of a single point. The function \(f \) whose graph is \(F_0 \) will then be the desired continuous extension of \(h \).

It suffices to show that if \((a_1, a_2) \) and \((a_1, a_2^* \) lie in \(F_0 \), then \(a_2 = a_2^* \). If not, there is a homeomorphism \(\xi \in H \) commuting with \(\psi \) without fixed points on \(A_2 \) such that \(\xi a_2 = a_2^* \). By Lemma 3, however \(S_1 F_0 = F_0 \). Since \(\xi \) has no fixed points, \(S_1 \) has no fixed points. But then \(F_0 \) and a fortiori \(F(a'_1, a'_2) \) would have at least two points over
every point of \(A_1 \). Since over the points of \(A_1 - S_0 \), it has only one point, this is impossible.

We may specialize Theorem 3 in two ways: (1) by letting \(A_2 \) be a compact group, \(\psi_0 \) a mapping of \(A_1 \) into \(A_2 \), \(\psi(a_1, a_2) = \psi_0(a_1) \cdot a_2 \), the homeomorphism family \(\mathcal{H} \) be the elements of \(A_2 - \{e\} \) acting by right multiplication on \(A_2 \); (2) by letting \(A_2 \) be a compact space, \(\psi_0 \) be a homeomorphism of \(A_2 \) onto itself such that the group generated by \(\psi_0 \) is equicontinuous, \(\psi(a_1, a_2) = \psi_0(a_2) \), \(\mathcal{H} \) the closure of the group of homeomorphisms generated by \(\psi_0 \) except for the identity. In this second case we may replace \(A_2 \) by the orbit closure under \(\psi_0 \) of one of the values taken by \(h \) on an element of \(A_1 - S_0 \). It is known [5, 9.33, pp. 78–79] that on this orbit closure \(\mathcal{H} \) is universally transitive and, unless the orbit closure is finite, the elements of \(\mathcal{H} \) have no fixed points on this set. If we modify \(h \) to make it a continuous mapping into this set, it will be a continuous mapping into \(A_2 \).

In these two cases the specialized forms of Theorem 3 become:

Theorem 4. Let \(A_1 \) be a Baire space, \(A_2 \) a compact group, \(\phi \) a homeomorphism of \(A_1 \) onto itself such that \(A_1 \) is a minimal orbit closure under \(\phi \). Let \(\psi_0 \) be a continuous mapping of \(A_1 \) into \(A_2 \). Suppose that the Baire function \(h \) satisfies the relation

\[
h(\phi a_1) = \psi_0(a_2) \cdot h(a_1)
\]

for all \(a_1 \) outside a set of the first category in \(A_1 \). Then after change on a set of the first category in \(A_1 \), \(h \) can be made into a continuous function from \(A_1 \) to \(A_2 \) which satisfies (1) for all \(a_1 \in A_1 \).

Theorem 5. Let \(A_1 \) be a Baire space, \(A_2 \) a compact space, \(\phi \) a homeomorphism of \(A_1 \) onto itself under which \(A_1 \) is a minimal orbit closure, \(\psi_0 \) a homeomorphism of \(A_2 \) onto itself which generates an equicontinuous group of homeomorphisms of \(A_2 \). Suppose that the Baire function \(h \) from \(A_1 \) to \(A_2 \) satisfies the relation

\[
h(\phi a_1) = \psi_0(h a_1)
\]

for all \(a_1 \) outside a set of the first category in \(A_1 \). Then after change on a set of the first category in \(A_1 \), \(h \) can be made into a continuous function from \(a_1 \) to \(a_2 \) satisfying (1)' for all \(a_1 \) in \(A_1 \).

Bibliography

ON SPACES WHICH ARE NOT OF COUNTABLE CHARACTER

J. M. MARR

It is well known that the unit interval I has a countable base and the fixed point property. By considering the maps $g(x) = x^2$ and $h(x) = 1 - x$, one sees that there is no $x \in I$ such that for every continuous map $f: I \to I$, $x \in f(I)$ implies $f(x) = x$.

In Theorem 1, it is shown that if A is a closed, non-null proper subset of a locally connected, compact Hausdorff space X which has a countable base, then there exists a continuous map $f: X \to X$ such that $A \cap f(X)$ is not contained in $A \cap f(A)$. Theorem 2 shows that certain nondegenerate topological spaces X contain proper subsets M such that for every continuous map $f: X \to X$, $M \cap f(X) \subseteq M \cap f(M)$. That is, for each of these spaces X and every continuous map $f: X \to X$, $x \in M \cap f(X)$ implies $f^{-1}(x) \cap M \neq \emptyset$. The corollary is of interest in that, if X satisfies the hypotheses of Theorem 2 and M consists of a single point, then a fixed point of some of the maps $f: X \to X$ is located.

Theorem 1. Suppose X is a connected, locally connected, compact Hausdorff space which has a countable base. If A is any non-null, closed, proper subset of X, then there exists a continuous map $f: X \to X$ such that $A \cap f(X) \setminus A \cap f(A) \neq \emptyset$.

Proof. Since X is compact Hausdorff and has a countable base, X is metrizable. Hence X is arcwise connected. Let $y \in X \setminus A$. Since...