ON SPACES WHICH ARE NOT OF COUNTABLE CHARACTER

J. M. MARR

It is well known that the unit interval I has a countable base and the fixed point property. By considering the maps $g(x) = x^2$ and $h(x) = 1 - x$, one sees that there is no $x \in I$ such that for every continuous map $f: I \to I$, $x \in f(I)$ implies $f(x) = x$.

In Theorem 1, it is shown that if A is a closed, non-null proper subset of a locally connected, compact Hausdorff space X which has a countable base, then there exists a continuous map $f: X \to X$ such that $A \cap f(X)$ is not contained in $A \cap f(A)$. Theorem 2 shows that certain nondegenerate topological spaces X contain proper subsets M such that for every continuous map $f: X \to X$, $M \cap f(X) \subseteq M \cap f(M)$. That is, for each of these spaces X and every continuous map $f: X \to X$, $x \in M \cap f(X)$ implies $f^{-1}(x) \cap M \neq \emptyset$. The corollary is of interest in that, if X satisfies the hypotheses of Theorem 2 and M consists of a single point, then a fixed point of some of the maps $f: X \to X$ is located.

Theorem 1. Suppose X is a connected, locally connected, compact Hausdorff space which has a countable base. If A is any non-null, closed, proper subset of X, then there exists a continuous map $f: X \to X$ such that $A \cap f(X) \backslash A \cap f(A) \neq \emptyset$.

Proof. Since X is compact Hausdorff and has a countable base, X is metrizable. Hence X is arcwise connected. Let $y \in X \backslash A$. Since

Received by the editors December 16, 1957 and, in revised form, April 3, 1958.
X is normal, there exists a continuous map h such that $h(x) = 0$ for $x \in A$, $h(y) = 1$, and $0 \leq h(x) \leq 1$ for each $x \in X$. Since X is arcwise connected, there is an arc C connecting y and A. Now C contains a subarc C_1, such that $y \in C_1$ and $C_1 \cap A$ is a single point x_0. Then there is a homeomorphism g such that $g([0, 1]) = C_1$, $g(0) = y$, and $g(1) = x_0$. Consider the continuous map $f = gh$. Clearly $f : X \to X$ and $x_0 \in A \cap f(X)$.

But since $x_0 \notin y$ and $f(A) = y$, $x_0 \notin f(A)$. Hence $x_0 \notin A \cap f(A)$; and $f = gh$ is the required map.

In the following let M consist of the set of all points $x \in X$ such that if x is a limit point of $\{y_n\}$ where $U_{y_n} \subset X \setminus x$, then $\{y_n\}$ contains uncountably many distinct points. It may be noted that X does not satisfy the first axiom of countability at points of M.

Theorem 2. Let X be a connected Hausdorff space which contains a non-null set M such that $M = \overline{M}$, and $M \neq X$. Suppose also that each point of $X \setminus M$ has a countable base. Then for every continuous map $f : X \to X$, $M \cap f(X) \subset M \cap f(M)$.

Proof. Let f be a continuous function such that f maps X into X. If $M \cap f(X) = \emptyset$, then $M \cap f(X) \subset M \cap f(M)$. On the other hand, suppose $x \in M \cap f(X)$ and $x \notin f(M)$. Now x is a limit point of $X \setminus x$, for otherwise X would not be connected. Since $x \notin f(M)$, $f^{-1}(x) \subset X \setminus M$.

Suppose there exists $z \in f^{-1}(x)$ such that every neighborhood of z intersects $X \setminus f^{-1}(x)$. Since $X \setminus M$ is open and $z \in X \setminus M$, there exists a countable set $\{U_n(z)\}$ of neighborhoods of z such that $\bigcap_{n=1}^{\infty} U_n(z) = z$, and $U_n(z) \subset X \setminus M$ for each n. In each $U_n(z)$ there exists a point u_n such that $u_n \in X \setminus f^{-1}(x)$. Now $f(u_n) \subset X \setminus x$ for each n; and, by the continuity of f, x is a limit point of the set $\bigcup_{n=1}^{\infty} f(u_n)$. But $\bigcup_{n=1}^{\infty} f(u_n)$ does not contain uncountably many distinct points. Thus a contradiction has been reached. Suppose that for every $z \in f^{-1}(x)$, there exists a neighborhood $U(z)$ such that $U(z) \cap \{X \setminus f^{-1}(x)\} = \emptyset$. Clearly $U(z)$ may be taken so that $U(z) \subset X \setminus M$. Then $U(z) \subset f^{-1}(x)$ for every $z \in f^{-1}(x)$, and $f^{-1}(x)$ is open in X. Since x is closed in X, $f^{-1}(x)$ is closed in X. Therefore $f^{-1}(x) = X$ and $f(X) = x$. But $f(M) \subset f(X)$; hence, $f(M) = x$. But this contradicts the assumption that $x \notin f(M)$.

Corollary. If X is a nondegenerate connected Hausdorff space in which M is a single point x_0, then for every continuous function f such that $f : X \to X$ and $x_0 \in f(X)$, $f(x_0) = x_0$.

Proof. By Theorem 2, $x_0 \in f(x_0)$. Since $f(x_0)$ is a single point, $x_0 = f(x_0)$.

Kansas State College