A CHARACTERIZATION OF LIGHT OPEN MAPS OF EUCLIDEAN SPACES INTO EUCLIDEAN SPACES

JAMES J. ANDREWS

We will use the term open map to mean a map f of X into Y such that $f(U)$ is open in Y for every open set U in X. A map f of \mathbb{R}^n (Euclidean n-space) into \mathbb{R}^m is pseudo-monotone if and only if $\mathbb{R}^n - f^{-1}(X)$ has no bounded component for every closed set X in \mathbb{R}^n such that $\mathbb{R}^m - X$ has no bounded component.

The purpose of this note is to prove that a light map f of \mathbb{R}^n into \mathbb{R}^m is open if and only if f is pseudo-monotone. But first we must prove the following lemma:

Lemma. If f is an open map of \mathbb{R}^n into \mathbb{R}^m, U is a bounded open set in \mathbb{R}^n, and $f(U) \cap W \neq \emptyset$ for some component W of $\mathbb{R}^m - f(\text{bdry } U)$, then $W \subseteq f(U)$. Thus, in particular, $f(U)$ does not intersect the unbounded component of $\mathbb{R}^m - f(\text{bdry } U)$.

Proof. Assume $W \subseteq f(U)$. Let p be a point of $W - f(U)$ and q be a point of $W \cap f(U)$. Let pq be an arc from p to q in $\mathbb{R}^n - f(\text{bdry } U)$. Since q is in the compact set $f(U)$ and p is not, there is a first point x on the arc pq in the order p to q such that x is in $f(U)$. We note x is not in $f(\text{bdry } U)$ since $pq \cap f(\text{bdry } U) = \emptyset$. Therefore $f^{-1}(x) \cap U \neq \emptyset$ and $x \subseteq \text{bdry } f(U)$. Hence f is not open.

Remark. If W is the union of X and the bounded components of $\mathbb{R}^m - X$, then $\mathbb{R}^m - W$ has no bounded components.

Theorem. A light map f of \mathbb{R}^n into \mathbb{R}^m is open if and only if f is pseudo-monotone.

Proof. Assume f is open but not pseudo-monotone. Then by definition of pseudo-monotone there is a closed set X in \mathbb{R}^m such that $\mathbb{R}^m - X$ has no bounded component and $\mathbb{R}^n - f^{-1}(X)$ has a bounded component. Let $\mathbb{R}^n - f^{-1}(X) = A \cup B$ where A and B are open, $A \cap B = \emptyset$, and A is both bounded and nonempty. For the open set A we have $f(\text{bdry } A) \subseteq X$ and $f(A) \subseteq \mathbb{R}^m - X$. Hence $f(A) \cap W \neq \emptyset$ for some unbounded component W of $\mathbb{R}^m - X$. ($\mathbb{R}^m - X$ has no bounded component.) But $\mathbb{R}^m - X \subseteq \mathbb{R}^m - f(\text{bdry } A)$. Therefore $f(A) \cap W' \neq \emptyset$,

Presented to the Society, April 6, 1957 under the title A characteristic of light open maps of locally Euclidean spaces into locally Euclidean spaces; received by the editors March 22, 1957 and, in revised form, April 18, 1958.

1 This research was supported by National Science Grant NSF-G3016.
where \(W' \) is the unbounded component of \(\mathbb{R}^m - f(\text{bdry } A) \) containing \(W \). By our lemma this is not possible.

Assume \(f \) is pseudo-monotone but not open. Then there is an open set \(U \) in \(\mathbb{R}^n \) such that \(f(U) \) is not open in \(\mathbb{R}^m \). Let \(p \) be a point of \(f(U) \cap \text{bdry } f(U) \), let \(q \) be a point of \(f^{-1}(p) \cap U \), and let \(V \) be a bounded neighborhood of \(q \) lying in \(U \) such that the boundary of \(V \) does not intersect the 0-dimensional set \(f^{-1}(p) \). The boundary of \(V = B \) is compact, hence there is a spherical neighborhood \(S \) of \(p \) which does not intersect the compact set \(f(B) \). Let \(x \) be a point of the set \(S - f(U) \). \(S - f(U) \) is not empty because \(p \) is the boundary of \(f(U) \). Let \(b \) be the first point on the line segment from \(x \) to \(p \) which is in the compact set \(f(V) \). Then \(b \) is in \(f(V) \) since \(b \) is in \(S \) and \(S \cap f(\text{bdry } V) = \emptyset \). Let \(a \) be a point of \(f^{-1}(b) \cap V \). Let \(r \) denote the ray from \(p \) through \(x \) and let \(r' \) denote the subray of \(r \) with source at \(x \). Let \(S' \) denote the open set \(S - r' \). Let \(V' \) be a neighborhood of \(a \), whose closure lies in the open set \(f^{-1}(S) \cap V \), and whose boundary does not intersect the 0-dimensional set \(f^{-1}(b) \). \(b \) is in \(f(V') \cap r \) and is the only point of the ray \(r' \cup s \) which lies in \(f(V') \). Hence \(b \) is in an unbounded component of \(\mathbb{R}^m - f(\text{bdry } V') \). Let \(W \) be the union of \(f(\text{bdry } V') \) and the bounded components of \(f(\text{bdry } V') \), then \(\mathbb{R}^m - W \) has no bounded components. Consider the set \(f^{-1}(W) \). \(a \in f^{-1}(W) \) because \(b \in W \). But \(\text{bdry } V' \subset f^{-1}(W) \); hence the bounded set \(V' \subset f^{-1}(W) \) and therefore \(a \in f^{-1}(W) \).

In showing that an open map is pseudo-monotone we did not use the fact that \(f \) was light. Hence an open map of \(\mathbb{R}^n \) into \(\mathbb{R}^m \) is pseudo-monotone.

In comparing the theorem with a result of A. D. Wallace [2], the referee points out that the following proposition is false:

Proposition. If \(f \) is a pseudo-monotone map of \(\mathbb{R}^n \) into \(\mathbb{R}^m \), then there exists an increasing sequence \(C_1, C_2, \cdots \) of \(n \)-cells such that \(UC_i = \mathbb{R}^n \) and \(f/C_i \) is quasi-monotone.

Bibliography

University of Georgia