A SEMI-SIMPLE MATRIX GROUP IS OF TYPE I
W. FORREST STINESPRING

The purpose of the following note is to give a short simple proof of the most important special case of Harish-Chandra's result [3, Theorem 7] that every connected semi-simple Lie group is of type I. We shall prove that every continuous unitary representation of a connected semi-simple matrix group is of type I. This fact is a consequence of theorems in two papers of Godement [1, Theorem 2; 2, Theorem 8]. An improved version of Godement's method is used here. The improvements are:

1. the argument is considerably shorter;
2. infinite dimensional nonunitary representations are not needed;
3. the argument is completely global; no direct integrals are used.

These improvements seem not to have been noticed before.

Definition. We shall say that an algebra is of type I_{∞} if it satisfies the identities

$$[A_1, \ldots, A_r] = \sum_{i_1, \ldots, i_r} \operatorname{sgn}\left(\begin{array}{c} 1 \cdots r \\ i_1 \cdots i_r \end{array}\right) A_{i_1} A_{i_2} \cdots A_{i_r} = 0$$

for all r for which the algebra of all $n \times n$ matrices satisfies them.

In [5, §2], Kaplansky shows that the algebra of all $n \times n$ matrices is of type I_{∞} but not of type $I_{\infty-1}$. It follows from the definition that an algebra is of type I_{∞} if it is a subalgebra of an algebra of type I_{∞}, or if it is a homomorphic image of an algebra of type I_{∞}, or if it has a separating family of homomorphisms into algebras of type I_{∞}. Since the above identities are linear in each variable, a von Neumann algebra is of type I_{∞} if it has a weakly dense subalgebra of type I_{∞}. A von Neumann algebra of type I (in the usual sense) is
the direct sum of von Neumann algebras of homogeneous type I_k where k runs over the cardinals. Since an algebra of type $I_{\mathbb{R}^n}$ in the sense of the above definition has no subalgebras isomorphic to the $(n+1)\times(n+1)$ matrices, it is clear that a von Neumann algebra is of type $I_{\mathbb{R}^n}$ as defined above if and only if it is of type I in the usual sense and all the direct summands of homogeneous type I_k are zero for $k>n$. Consequently the present terminology accords with the usual one.

Theorem 1. Let G be a connected semi-simple matrix group. Let L be the left regular representation of G on $L_2(G)$, and let \mathcal{L} be the von Neumann algebra generated by L. Let K be a maximal compact subgroup of G, and let ρ be an irreducible representation of K of degree n with character χ/n. Let E be the projection given by

$$E = \int_K \chi(k)L(k)dKk$$

where dKk is Haar measure on K and the integral is in the weak sense. Then the algebra $E\mathcal{L}E$ is of type $I_{\mathbb{R}^2}$.

Proof. The group G has a connected solvable subgroup S such that $G = KS$ (see [4, Lemma 3.11 and the proof of Lemma 3.12]). Let α be the algebra of all L_ϕ with ϕ in $C_0(G)$ where $L_\phi = \int_G \phi(x)L(x)dx$. It is sufficient to show that $E\alpha E$ is of type $I_{\mathbb{R}^2}$. This will be done by exhibiting a separating family of homomorphisms of $E\alpha E$ into $q\times q$ matrices with $q \leq n^2$. Such a family is provided by the finite dimensional irreducible representations of G.

If γ is a finite dimensional representation of G we consider the homomorphism $L_{\gamma} \rightarrow \int f(x)\gamma(x)dx$ of α into operators on the representation space of γ. Since G has a faithful finite dimensional representation, the Stone-Weierstrass theorem implies that these homomorphisms separate α. Consequently, since G is semi-simple, the ones arising from irreducible γ separate α. Let $Q = \int_K \chi(k)\gamma(k)dKk$. Then $E\mathcal{L}E \rightarrow Q(\int f(x)\gamma(x)dx)Q$ under the homomorphism. It is, therefore, sufficient to observe that the dimension q of the range of the projection Q is $\leq n^2$. But this is a consequence of the fact that $\gamma|K$ is a cyclic representation, which we shall now show. By Lie's theorem there exists a vector v such that $\gamma(s)v = \lambda(s)v$ for all s in S where $\lambda(s)$ is a scalar. Since γ is irreducible $\gamma(G)v = \gamma(K)\gamma(S)v = \lambda(S)\gamma(K)v$ spans the representation space, and so $\gamma(K)v$ does also.

Corollary. Let G be a connected semi-simple matrix group. Then every continuous unitary representation of G is of type I.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let U be a unitary representation of G, and let ρ be any irreducible representation of a maximal compact subgroup K. Let $\tilde{\chi}_\rho / n$ be the character of ρ where n is the degree of ρ. Let $P_\rho = \int \chi_\rho(x) U(x) dx$. Let \mathfrak{u} be the von Neumann algebra generated by U. Then $P_\rho \mathfrak{u} P_\rho$ is of type $I_\frac{1}{n}$ since a number of subalgebras of $E \subset E$ have homomorphic images which are weakly dense in $P_\rho \mathfrak{u} P_\rho$. But $\{ P_\rho \}$ is an orthogonal family of projections whose sum is I. Hence \mathfrak{u} is of type I.

Bibliography

Institute for Advanced Study