APPROXIMATION BY A POLYNOMIAL AND ITS DERIVATIVES ON CERTAIN CLOSED SETS

ERRETT BISHOP

The work on the theory of approximations initiated by Weierstrass and continued by Walsh, Keldysh, and Lavrentiev, among others, has culminated in the following theorem of Mergelyan (See Mergelyan [3]): Given any compact subset C of the complex plane, which does not separate the plane, and given any continuous function f on C which is analytic interior to C, then f can be approximated uniformly on C by polynomials.

This theorem leaves the following question unanswered: If f_0, f_1, \ldots, f_n are continuous functions on C, can a sequence $\{p_k\}$ of polynomials be found with the property that for each integer i with $0 \leq i \leq n$ the sequence $\{p_k^{(i)}\}$, where $p_k^{(i)}$ denotes the ith derivative of p_k, converges uniformly on C to f_i? If C is totally disconnected, it is easy to show that the answer to this question is always yes. We omit the simple proof, because a more general result will be given elsewhere. If C is a Jordan arc, the question becomes more complicated. It is clear that if C has a rectifiable sub-arc J, whose endpoints we call z_0 and z_1, then for the approximation to be possible it is necessary that $\int_{f_i+1}(z)dz = f_i(z_1) - f_i(z_0)$ for $0 \leq i \leq n - 1$. Thus, if the approximation is to be possible whatever the functions f_0, f_1, \ldots, f_n, it is necessary that C have no rectifiable sub-arcs. Conversely, if C is a Jordan arc having no rectifiable sub-arcs, we conjecture that the approximation is always possible. It is the purpose of this paper to prove this conjecture by means of an additional hypothesis, that C satisfy a Lipschitz condition of a fixed order c at a dense set of points. (This concept will be defined below.) The author has been unable to prove the conjecture without this restriction.

If S_1 and S_2 are any subsets of the complex plane, define $d(S_1, S_2) = \min \{|z_1 - z_2| \mid z_1 \in S_1, z_2 \in S_2\}$.

Definition 1. Let ϕ be a homeomorphic map of $[0, 1]$ into the complex plane, so that $\phi[0, 1]$ is a Jordan arc C. We say that C satisfies a Lipschitz condition of order c at a point $\phi(t)$ of C, $t \in [0, 1]$, if there exist $A > 0$ and $\delta > 0$ such that max $\{d(\phi[0, t], z), d(\phi[t, 1], z)\} \geq A|\phi(t) - z|^c$ whenever $|\phi(t) - z| < \delta$.

Then we have

Theorem 1. If C has no rectifiable sub-arcs and if there exists $c > 0$ such that C satisfies a Lipschitz condition of order c at a dense set S of

Received by the editors April 23, 1957, and, in revised form, May 3, 1958.
points, then for any continuous functions \(f_0, \ldots, f_n \) on \(C \) there exists a sequence \(\{p_i\} \) of polynomials for which \(p_i^{[k]} \to f_k \) uniformly on \(C \) as \(i \to \infty \), for \(0 \leq k \leq n \).

The proof of Theorem 1 will utilize the Riesz representation theorem (see Banach [1, p. 60]). If \(X \) is the set of all \(n+1 \) tuples \((f_0, \ldots, f_n) \) of continuous functions on \(C \), topologized by the norm \(\| (f_0, \ldots, f_n) \| = \sup \{ |f_i(z)| : z \in C, 0 \leq i \leq n \} \), then by the Riesz theorem we see that to any bounded linear functional \(L \) on \(X \) correspond unique measures \(\mu_0, \ldots, \mu_n \) on \([0, 1]\) such that \(L(f_0, \ldots, f_n) = \int_0^1 f_0(\phi(t))d\mu_0(t) + \cdots + \int_0^1 f_n(\phi(t))d\mu_n(t) \). Now let \(Y \) be the subset of \(X \) consisting of all \((\phi, p^{[1]}, \ldots, p^{[n]}) \), where \(\phi \) is any polynomial. Then Theorem 1 states that \(Y \) is dense in \(X \). By the Hahn-Banach theorem (see Banach [1]), this is equivalent to saying that every bounded linear functional on \(X \) which vanishes on \(Y \) vanishes on \(X \).

If \(L \) is the bounded linear functional in question, then by the above representation of \(L \) we see that \(L(p, \ldots, p^{[n]}) = \int_0^1 p(\phi(t))d\mu_0(t) + \cdots + \int_0^1 p^{[n]}(\phi(t))d\mu_n(t) = 0 \) for all polynomials \(p \). To prove Theorem 1 we must show that this implies that \(\mu_0 = \mu_1 = \cdots = \mu_n = 0 \).

The linear functional \(L \) and therefore \(\mu_0, \ldots, \mu_n \) will be fixed during the discussion. As an abbreviation we set \(L_t(p) = \int_0^1 p(\phi(t))d\mu_0(t) + \cdots + \int_0^1 p^{[n]}(\phi(t))d\mu_n(t) \) for all \(t \) in \([0, 1]\) and all functions \(p \) analytic in some neighborhood of \(C \). Then \(L_t(p) = 0 \).

Assume now that \(\phi(t) \in S \). We proceed to obtain a new formula for \(L_t(p) \). To do this, take \(A \) and \(\delta \) as in Definition 1, and let \(\epsilon \) be positive and less than \(\delta \). Let \(J \) be the circle \(|z - \phi(t)| = \epsilon \). Then by Definition 1, for \(z \) in \(J \) either \(d(z, U_1) > A\epsilon^e \) or \(d(z, U_2) > A\epsilon^e \), where \(U_1 = \phi[0, t] \) and \(U_2 = \phi[t, 1] \). Thus we can write \(J = J_1 \cup J_2 \), where \(J_1 \) and \(J_2 \) are disjoint Borel sets and \(d(z, U_i) > A\epsilon^e \) for \(z \) in \(J_i \). Now if \(p \) is any polynomial, let \(K = \max \{ |p(z)| : z \in J \} \). Then

\[
p(z) = (1/2\pi i) \int_J p(\xi) d\xi/(\xi - z)
\]

for \(|z - \phi(t)| < \epsilon \). If for \(i = 1 \) and \(2 \) we define

\[
f_i(z) = (1/2\pi i) \int_{J_i} p(\xi) d\xi/(\xi - z),
\]

then we see that \(f_i \) is analytic on the complement of the closure of \(J_i \), that \(|f_i^{[l]}(z)| \leq K_j^l d(z, J_i)^{-(l+1)} \), and that \(p(z) = f_1(z) + f_2(z) \) for \(|z - \phi(t)| < \epsilon \). Thus we see that \(|f_i^{[l]}(z)| < K_j^l[A\epsilon^e]^{-(l+1)} \) for \(z \) in \(U_i \).

Now let \(0_1 \) be a neighborhood of \(\phi[0, t] \) and \(0_2 \) a neighborhood of \(\phi[t, 1] \) such that \(0_1 \cap 0_2 = \{ z \mid |z - \phi(t)| < \epsilon \} \) and \(0_1 \cap J_1 = 0_2 \cap J_2 = \phi \).

Then \(f_1 + f_2 = p \) on \(0_1 \cap 0_2 \) and \(f_i \) is analytic in \(0_i \). Therefore we may
define an analytic function g_1 on $O_1 \cup O_2$ by specifying $g_1(z) = f_1(z)$ for z in O_1 and $g_1(z) = p(z) - f_2(z)$ for z in O_2. Also define g_2 on $O_1 \cup O_2$ by $g_2(z) = f_2(z)$ for z in O_2 and $g_2(z) = p(z) - f_1(z)$ for z in O_1. Then $g_1 + g_2 = p$ in $O_1 \cup O_2$. Also $|g_1^{[j]}(z)| = |f_1^{[j]}(z)| \leq K_j! [A e^e]^{-j+1}$ for z in U_i, where $i = 1$ or 2 and j is arbitrary. For $i = 1$ this inequality, in conjunction with the definition of $L_i(g_1)$, tells us that $|L_i(g_1)| \leq M_1 K e^{-c(n+1)}$, where M_1 is a constant. For $i = 2$ the inequality tells us that $|L_i(g_2)| \leq M_2 K e^{-c(n+1)}$. Thus we see that $|L_i(p)| = |L_i(g_1) + L_i(g_2)| \leq |L_i(g_1)| + |L_i(g_2)| = |L_i(g_1)| + |L_i(g_2) - L_i(g_2)| \leq M K e^{-m}$, where $M = M_1 + M_2$ and m is any integer larger than $c(n+1)$. Taking p to be the polynomial $(z - \phi(t))^i$, we see that $K = e^i$, so that $L_i([z - \phi(t)]^i) < M e^{-m}$ for all $e < \delta$. If $j > m$, this implies that $L_i([z - \phi(t)]^i) = 0$. Therefore $L_i(p)$ depends only on the first $m + 1$ terms of the expansion of p in powers on $z - \phi(t)$, so that

$$L_i(p) = \sum_{i=0}^{m} \beta_i(\ell) p^{[i]}(\phi(\ell)), \text{ where } \beta_0(\ell), \ldots, \beta_m(\ell)$$

are certain complex numbers.

For the remainder of the proof, the only use which will be made of the fact that C satisfies a Lipschitz condition of order c at points of S will be to conclude that the expression just obtained for $L_i(p)$ is valid whenever $\phi(t)$ is in S. Therefore, the conjecture of the introductory paragraphs can be proved whenever the expression just obtained for $L_i(p)$ can be shown to be valid for a set of values of t which is dense in $[0, 1]$.

We now obtain another formula for $L_i(p)$, where now t may be any point in $(0, 1)$. For any polynomial p and any complex number z we have the Taylor's formula

$$p(z) = \sum_{i=0}^{\infty} p^{[i]}(\phi(\ell)) \frac{[z - \phi(\ell)]^i}{i!}.$$

Thus

$$L_i(p) = \sum_{j=0}^{n} \int_{0}^{t} \left\{ \sum_{i=0}^{\infty} p^{[i+j]}(\phi(\ell)) \frac{[\phi(x) - \phi(\ell)]^i}{i!} \right\} d\mu_j(x)$$

$$= \sum_{i=0}^{\infty} p^{[i]}(\phi(\ell)) \left(\sum_{j=0}^{i} \int_{0}^{t} \frac{[\phi(x) - \phi(\ell)]^{i-j}}{(i-j)!} d\mu_j(x) \right),$$

where $\mu_j = 0$ if $j > n$. If we define

$$\alpha_i(t) = \sum_{j=0}^{i} \int_{0}^{t} \frac{[\phi(x) - \phi(\ell)]^{i-j}}{(i-j)!} d\mu_j(x),$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for \(t \) in \((0, 1)\), we therefore have \(L_t(p) = \sum_{i=0}^{m} \beta_i(t) p^{[i]}(\phi(t)) \alpha_i(t) \). We see that \(\alpha_i \) is continuous on the right. Comparing the two formulas obtained for \(L_t(p) \), we see that
\[
\sum_{i=0}^{m} \beta_i(t) p^{[i]}(\phi(t)) = \sum_{i=0}^{m} \alpha_i(t) p^{[i]}(\phi(t))
\]
for all \(t \) in \((0, 1)\) with \(\phi(t) \in S \), and for all polynomials \(p \). It follows that \(\alpha_i(t) = 0 \) for \(i > m \), \(t \in (0, 1) \), and \(\phi(t) \in S \). Since \(S \) is dense and since \(\alpha_i \) is continuous on the right, it follows that \(\alpha_i = 0 \) for \(i > m \). Before proceeding, we need a definition.

Definition 2. If \(f \) and \(g \) are two complex valued functions on \([0, 1]\), if \(t \in [0, 1) \), and if \(a \) is a complex number, then \(a \) is said to be a right conditional derivative at the point \(t \) of \(f \) with respect to \(g \) if
\[
\lim_{i \to \infty} \left\{ \frac{[\phi(t) - \phi(t_0)]}{[\alpha_i(t) - \phi(t_0)]} \right\} [\phi(t) - \phi(t_0)]^{-1} d\mu_j(x)
\]
for all \(i \) in \((0, 1)\) with \(\phi(t) \in S \), and for all polynomials \(p \). It follows that \(\alpha_i(t) = 0 \) for \(i > m \), \(t \in (0, 1) \), and \(\phi(t) \in S \). Since \(S \) is dense and since \(\alpha_i \) is continuous on the right, it follows that \(\alpha_i = 0 \) for \(i > m \). Before proceeding, we need a definition.

To get more information about \(\alpha_i \), take \(0 < t_0 < t < 1 \), set \(\lambda_i(t) = \mu_i[0, t] = \int_0^t d\mu_j(x) \), and consider the difference quotient
\[
\sum_{j=0}^{i-1} \int_0^t \frac{[\phi(x) - \phi(t_0)]}{(i - j)!} d\mu_j(x)
\]
for \(\phi(t) - \phi(t_0) = \phi(x) - \phi(t) \) for all \(x \) in \([0, t]\). The latter condition will be satisfied if \(\phi(t) - \phi(t_0) = \phi(x) - \phi(t_0) \) for all \(x \) in \([t_0, t]\), and values of \(t \) can be found arbitrarily close to \(t_0 \) for which this will be true. Thus the second summation can be made arbitrarily small for certain values of \(t \) close to \(t_0 \). Due to uniform convergence under the integral signs, the other of the above summations approaches
\[
\sum_{j=0}^{i-1} \int_0^{t_0} \frac{\phi(x) - \phi(t_0)}{(i - j - 1)!} d\mu_j(x) = -\alpha_{i-1}(t_0) \text{ as } t \to t_0.
\]
Thus we see that \(\alpha_{i-1}(t_0) \) is a right conditional derivative at \(t_0 \) of \(\lambda_j - \alpha_j \) with respect to \(\phi \), for \(j \geq 1 \) and all \(t_0 \) in \((0, 1)\).
Since $\alpha_j = 0$ for $j > m$ and since $\lambda_j = 0$ for $j > n$, if $m > n$ we see that $\alpha_m(t)$, which is a right conditional derivative at t of $\lambda_{m+1} - \alpha_{m+1} = 0$ with respect to ϕ, must vanish for t in $(0, 1)$. Thus $\alpha_m = 0$. The argument can then be continued to show step by step that $\alpha_i = 0$ for $i \geq n$.

Therefore $\alpha_{n-1}(t)$ is a right conditional derivative at the point t of $\lambda_n - \alpha_n = \lambda_n$ with respect to ϕ, for all t in $(0, 1)$. If $\alpha_{n-1}(t) \neq 0$, this implies that $[\alpha_{n-1}(t)]^{-1}$ is a right conditional derivative at t of ϕ with respect to λ_n. Since α_{n-1} is continuous on the right, we can find $u > t$ and $r > 0$ such that $|\alpha_{n-1}(x)| > r$ for x in $[t, u)$. Therefore for x in $[t, u)$ we see that $|\alpha_{n-1}(x)|^{-1} < r^{-1}$ and $[\alpha_{n-1}(x)]^{-1}$ is a right conditional derivative at x of ϕ with respect to λ_n. Hence there exist points x' arbitrarily close to x on the right with $|[\phi(x') - \phi(x)] \cdot [\lambda_n(x') - \lambda_n(x)]^{-1}| < r^{-1}$. Given any x and y in $[t, u)$, $x < y$, let T be the set of all x' in $[x, y]$ for which there exists x'' in $[x', y]$ with $|\phi(x'') - \phi(x)| \leq r^{-1} \int_{x'}^y d\lambda_n$. Obviously, $x \in T$. Also T is a closed subset of $[x, y]$ because $|\phi(x') - \phi(x)|$ is a continuous function of x''. To show that T is open in $[x, y]$, take any x' in T, and choose x'' as above. If either $x' = y$ or $x' < x''$, then $[x, x''] \subset T$ is a neighborhood of x' in $[x, y]$. On the other hand, if $x' = x'' < y$, then the above considerations show that there exists w in $(x', y]$ with

$$|\phi(w) - \phi(x')| < r^{-1} |\lambda_n(w) - \lambda_n(x')|.$$

Thus we have

$$|\phi(w) - \phi(x)| \leq |\phi(w) - \phi(x')| + |\phi(x') - \phi(x)| < r^{-1} |\lambda_n(w) - \lambda_n(x')| + r^{-1} \int_{x'}^w d\lambda_n \leq r^{-1} \int_x^w d\lambda_n.$$

Therefore $w \in T$ so that $[x, w] \subset T$. Thus $[x, w]$ is a neighborhood of x' in $[x, y]$. Hence T is both open and closed in $[x, y]$. Since $x \in T$, $T = [x, y]$. Therefore $y \in T$, so that $|\phi(y) - \phi(x)| \leq r^{-1} \int_x^y d\lambda_n$ for all x and y in $[t, u)$. Therefore ϕ has bounded variation on $[t, u)$, so that $\phi [t, u]$ is a rectifiable sub-arc of C. This contradicts the hypothesis. This contradiction shows that $\alpha_{n-1}(t) = 0$ for all t in $[0, 1)$, so that $\alpha_{n-1} = 0$. Having proved this, we can use the same argument to show step by step that $\alpha_{n-2} = \alpha_{n-3} = \cdots = \alpha_0 = 0$. But $\alpha_0(t) = \int_0^t d\mu_0(t)$. Thus μ_0 vanishes on all subsets of $[0, 1)$. Since there is inherent symmetry between the endpoints, $\mu_0 = 0$. Then

$$0 = \alpha_1(t) = \int_0^t [\phi(x) - \phi(t)] d\mu_0(x) + \int_0^t d\mu_1(x) = \int_0^t d\mu_1(x),$$

so that $\mu_1 = 0$. Thus we show step-by-step that $\mu_0 = \mu_1 = \cdots = \mu_n = 0$. This completes the proof of Theorem 1.
There exists Jordan arcs for which condition (2) is fulfilled. For instance, a Jordan arc which has no rectifiable sub-arcs and which has a tangent at a dense set of points will do, because the existence of a tangent implies that a Lipschitz condition of order 1 is fulfilled. To see this, assume that C has a tangent at $\phi(t_0)$. By this we mean that the parameter t can be so chosen that $\phi'(t_0)$ exists and is not zero. Now if C does not satisfy a Lipschitz condition of order 1 at $\phi(t_0)$, then for each $\delta > 0$ there exists z with $|\phi(t_0) - z| < \delta$ such that $d(\phi[0, t_0], z) < |\phi(t_0) - z|/4$ and $d(\phi[t_0, 1], z) < |\phi(t_0) - z|/4$. Therefore, there exist t_1 in $[0, t_0]$ and t_2 in $[t_0, 1]$ with

$$|\phi(t_1) - z| < |\phi(t_0) - z|/4$$

and $|\phi(t_2) - z| < |\phi(t_0) - z|/4$, so that $|\phi(t_1) - \phi(t_2)| < |\phi(t_0) - z|/2$. Also,

$$|\phi(t_0) - z| \leq |\phi(t_0) - \phi(t_1)| + |t_1 - z| + |\phi(t_0) - \phi(t_1)| + |\phi(t_0) - z|/4,$$

so that $3|\phi(t_0) - z|/4 < |\phi(t_0) - \phi(t_1)|$. Thus,

$$|\phi(t_1) - \phi(t_2)| < 2|\phi(t_0) - \phi(t_1)|/3.$$

It follows that

$$\gamma = |\phi(t_1) - \phi(t_2)| \leq |t_1 - t_2|^{-1} |\phi(t_0) - \phi(t_1)| |t_0 - t_1|^{-1} < 2/3.$$

On the other hand, as $\delta \to 0$ the quantity γ converges to $|\phi'(t_0)| \cdot |\phi'(t_0)|^{-1} = 1$. This contradiction shows that C satisfies a Lipschitz condition of order 1 at $\phi(t_0)$. To construct a Jordan arc which has no rectifiable sub-arcs and which has a tangent at a dense set of points, let f be any continuous real function on $[0, 1]$ such that f' exists at a dense set S of points and such that in any sub-interval the set of points where f' does not exist has positive measure. Let $\phi(t) = t + if(t)$, so that $\phi[0, 1] = C$ is a Jordan arc having a tangent at the dense set of points $\phi(S)$. Also C has no rectifiable sub-arcs, because if $\phi[t, u]$ were a rectifiable sub-arc then ϕ would be of bounded variation on $[t, u]$, which would imply that f' would exist almost everywhere in $[t, u]$, contrary to the condition on f.

It only remains to construct the function f. The standard techniques for the construction of nondifferentiable functions can be used (see Hobson [2]). Let $\{r_n\} = s$ be a sequence of irrational numbers which is dense in $[0, 1]$. It is easy to construct inductively a sequence $\{C_n\}$ of countable subsets of $[0, 1]$, each consisting of rational numbers and each containing 0 and 1, such that the accumulation points of C_n are exactly r_1, \cdots, r_n, such that the distance
of two consecutive points \(t_1 \) and \(t_2 \) of \(C_n \) is not larger than \(6^{-n}d \), where
\(d \) is the distance between the sets \(\{ t_1, t_2 \} \) and \(\{ r_1, \ldots, r_n \} \), and such
that \(D_n \subseteq C_{n+1} \). Here \(D_n = C_n \cup \mathcal{C}_n \), where \(\mathcal{C}_n \) consists of all points
which lie midway between two consecutive points of \(C_n \). Thus \(D_n \)
consists of rational numbers, and therefore is disjoint from the se-
queness \(s \). Define the function \(f_n \) on \([0, 1] \) as follows. Let \(f_n(t) = 0 \) if
\(t \in C_n \cup \{ r_1, \ldots, r_n \} \). For consecutive points \(t_1 \) and \(t_2 \) in \(C_n \), let
\(f_n(t) = 3^n(t - t_1) \) if \(t_1 \leq t \leq (t_1 + t_2)/2 \) and \(f_n(t) = 3^n(t_2 - t) \) if
\((t_1 + t_2)/2 \leq t \leq t_2 \). Since any point of \([0, 1] \) which is not in \(C_n \cup \{ r_1, \ldots, r_n \} \) lies
between two consecutive points of \(C_n \), this defines \(f_n \) uniquely at all
points of \([0, 1] \). The function \(f_n \) is clearly continuous, except possibly
at the points \(r_1, \ldots, r_n \), and \(|f_n'(t)| \) exists and equals \(3^n \) if \(t \) is not
in the set \(D_n \cup \{ r_1, \ldots, r_n \} \). Also, if \(u_1 \) and \(u_2 \) are consecutive
points of \(D_n \), it is clear that \(|f_n(u_2) - f_n(u_1)| \) at \(u_2 - u_1 \) = \(3^n \). To in-
vestigate the behavior of \(f_n \) at the point \(r_i \), where \(i \leq n \), let \(t \) be any
point of \([0, 1] \) \(\setminus \{ r_1, \ldots, r_n \} \). There exist consecutive points \(t_1 \) and
\(t_2 \) of \(C_n \) with \(t_1 \leq t \leq t_2 \). By the definition of \(f_n \), we have \(|f_n(t)| \leq 3^n(t_2 - t_1) \).
By the construction of \(C_n \), we have \(t_2 - t_1 \leq 6^{-n} |t - r_i| \). Thus, \(|f_n(t)| = |f_n(t)| \leq 2^{-n} |t - r_i| \) for all \(t \) in \([0, 1] \). In particular, we
see that \(f_n'(r_i) = 0 \), so that \(f_n'(t) \) exists if \(t \) is not in \(D_n \), and that \(f_n \) is
continuous at \(r_i \). Therefore, \(f_n \) is continuous on \([0, 1] \). We also see
that \(0 \leq f_n(t) \leq 2^{-n} \) for all \(t \). The series \(\sum_{n=1}^{\infty} f_n \) therefore converges
uniformly on \([0, 1] \) to a continuous function \(f \). It will be shown
that \(f'(t) \) exists if and only if \(t \) is a member of the sequence \(s \). If
\(t = r_i \) is a member of \(s \), let \(f = g + h \), where \(g = \sum_{n=1}^{i-1} f_n \) and \(h = \sum_{n=i}^{\infty} f_n \).
Then \(g'(r_i) \) exists because \(r_i \) is not in \(D_n \) for all \(n \). Also,

\[
| h(u) - h(r_i) | \leq \sum_{n=i}^{\infty} |f_n(u) - f_n(r_i)| \leq \sum_{n=i}^{\infty} 2^{-n} |u - r_i|^2 \leq |u - r_i|^2
\]

for all \(u \), so that \(h'(r_i) \) exists and is zero. Therefore \(f'(r_i) \) exists. Now
assume that \(t \) is not an element of the sequence \(s \). Let \(n \) be arbitrary.
Since \(t \) is not an accumulation point of \(C_n \), there exist consecutive
points \(u_1 \) and \(u_2 \) in \(D_n \) with \(u_1 \leq t \leq u_2 \). Then \(f(u_2) - f(u_1) = \sum_{k=1}^{n} f_k(u_2) - f_k(u_1) \) because \(f_k(u) = 0 \) if \(u \in D_n \subseteq C_{n+1} \) and \(k \geq n + 1 \). Thus

\[
| f(u_2) - f(u_1) | (u_2 - u_1)^{-1} \geq | f_n(u_2) - f_n(u_1) | (u_2 - u_1)^{-1} - \sum_{k=1}^{n-1} | f_k(u_2) - f_k(u_1) | (u_2 - u_1)^{-1} \geq 3^n - \sum_{k=1}^{n} 3^k \geq n.
\]

Thus the difference quotients, \([f(u_2) - f(u_1)](u_2 - u_1)^{-1} \), for \(u_1 \leq t \leq u_2 \),
are not bounded. It follows that $f'(t)$ does not exist, as was to be proved.

References

University of California, Berkeley

AN IDENTITY IN THE THEORY OF THE GENERALIZED POLYNOMIALS OF JACobi

B. GERMANSKY

1. Introduction of some new notations in the theory of the Jacobi polynomials. To facilitate the passage from the usual Jacobi polynomials $P_n^{(\alpha, \beta)}(x)$ to the generalized Jacobi polynomials $P_n^{(\alpha_0, \ldots, \alpha_p)}(x)$ considered here, we introduce some new notations in the theory of the first mentioned polynomials. It is well known\(^1\) that the zeros of these polynomials are the points $x_1 = x_1^{(n)}$, $x_2 = x_2^{(n)}$, \ldots, $x_n = x_n^{(n)}$, which maximize the expression

$$T(x_1, x_2, \ldots, x_n) = T(x) = \prod_{k=1}^n \left(1 - x_k\right)^{p} \left(1 + x_k\right)^{q} \prod_{1 \leq \rho < \omega \leq n} |x_\rho - x_\omega|$$

in the unit-interval $I: [-1, +1]$. Here $\alpha = 2p - 1$ and $\beta = 2q - 1$ and it is assumed $x_1 > x_2 > \cdots > x_n$. Instead of $T(x)$ we use the expression

$$V_m(\xi_1, \xi_2, \ldots, \xi_m; e_1, e_2, \ldots, e_m) = V_m(\xi; e) = \prod_{1 \leq i < k \leq m} (\xi_i - \xi_k)^{e_i e_k},$$

where we suppose that $m = n + 2$; that the points ξ_1 and ξ_m are fixed from the outset and are equal to $a_0 = -1$ and $a_1 = +1$ respectively; that $e_1 = p_0 = q$, $e_m = p_1 = p$, $e_2 = e_3 = \cdots = e_{m-1} = 1$; that the points $\xi_1, \xi_2, \ldots, \xi_m$ are counted in increasing order; $-1 = \xi_1 < \xi_2 < \cdots < \xi_{m-1} = +1$ and therefore that $\xi_2 = x_m$, $\xi_3 = x_{m-1}$, \ldots, $\xi_{m-1} = x_1$. It results that $V_m(\xi_1, \xi_2, \ldots, \xi_m; e_1, e_2, \ldots, e_m)$ is a function of $\xi_2, \xi_3, \ldots, \xi_{m-1}; p_0, p_1$ only, as is $T(x)$. Then the zeros of the Jacobi polynomial $P_n^{(\alpha, \beta)}(x)$ are the points $\xi_2 = \xi_2^{(m)} = x_m^{(n)}$, $\xi_3 = \xi_3^{(m)} = x_{m-1}^{(n)}$, \ldots, $\xi_{m-1} = \xi_{m-1}^{(m)} = x_1^{(n)}$, which maximize the absolute value of $V_m(\xi; e)$ on I, under the mentioned conditions. We call the last function the generalized Vandermondean of the degree m and of the order 1. We write

Received by the editors January 2, 1958 and, in revised form, April 25, 1958.