A NOTE ON DERIVATIONS OF LIE ALGEBRAS II

G. F. LÉGER

Let L be a Lie algebra over a ground field of characteristic 0 and let $D(L)$ and $I(L)$ denote the Lie algebra of derivations and inner derivations of L respectively.

The following theorem is proved, although not explicitly stated, in an earlier note.¹

Theorem 1. Let $L = S + R$ (Levi decomposition) and let $I(S) = \{D \in D(L), D(S) = 0\}$. Further let ρ denote the restriction homomorphism of $D(L)$ into $D(R)$. Then $D(L)$ splits over $I(L) \implies \rho(I(S))$ splits over $\rho(I(S)) \cap I(R)$.

If S is a semi-simple Lie algebra and M is any S-module then M is the direct sum of M^S and $S \cdot M$ where M^S is the trivial submodule of M.

Theorem 2. Let $L = S + R$ (Levi decomposition). If $R^S \subseteq Z(R)$ (the center of R) then $D(L)$ splits over $I(L)$.

Proof. Let $u \in R$ and suppose that the derivation of R that is effected by u is the restriction to R of a derivation of L that annihilates S. Then $[S, u] \subseteq Z(R)$. As an S-module, R is the direct sum of $Z(R)$ and a complementary submodule P. The component of u in P is annihilated by S so that $u \in R^S + Z(R) \subseteq Z(R)$. This means

Received by the editors May 17, 1958 and, in revised form, June 3, 1958.

¹ Details will be found in G. F. Léger, *A note on the derivations of Lie algebras*, Proc. Amer. Math. Soc. vol. 4 (1953). We refer to this note as I.

² The author is grateful to the referee for putting Theorem 2 in this form.
that the derivation of R effected by u is 0. Now it follows from Theorem 1 that $D(L)$ splits over $I(L)$.

At the end of I is the following example (Hochschild’s) of a nilpotent Lie algebra R such that $D(R)$ does not split over $I(R)$. R has a basis (x_1, x_2, x_3, x_4) over a ground field K (of characteristic 0) where (x_2, x_3, x_4) is abelian and $[x_1, x_2] = x_4$, $[x_1, x_3] = 0$, $[x_1, x_4] = 0$.

Now let $L = S + R$ where S has a basis (s_1, s_2, s_3) over K with $[s_i, x_j] = 0$, for $i = 1, 2, 3$ and $j = 3, 4$,

\[
\begin{align*}
[s_1, s_2] &= 2s_2, & [s_2, s_1] &= s_1, & [s_2, x_2] &= x_1, \\
[s_1, s_3] &= -2s_3, & [s_1, x_2] &= -x_2, & [s_3, x_1] &= x_2, \\
[s_1, x_1] &= x_1, & [s_2, x_1] &= 0, & [s_3, x_2] &= 0.
\end{align*}
\]

Then S is simple and $L = S + R$ is a Levi decomposition of L. Further $R^S \subseteq Z(R)$ so that $D(L)$ splits over $I(L)$ by Theorem 2. Thus we have an example of a Lie algebra L with radical R such that $D(L)$ splits over $I(L)$ but $D(R)$ does not split over $I(R)$.

This settles a question left open in I.

University of Pittsburgh