NOTE ON A THEOREM OF FUGLEDE AND PUTNAM

S. K. BERBERIAN

1. An involution in a ring A is a mapping $a \rightarrow a^*$ ($a \in A$) such that $a^{**} = a$, $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$. An element $a \in A$ is (1) normal if $a^*a = aa^*$, (2) self-adjoint if $a^* = a$, (3) unitary if $a^*a = aa^* = 1$ ($1 = $ unity element of A). We say that “Fuglede's theorem holds in A” in case the relations $a \in A$, a normal, $b \in A$, $ba = ab$, imply $ba^* = a^*b$; briefly, A is an FT-ring.

It follows from a theorem of B. Fuglede that the ring A of all bounded operators in a Hilbert space (hence any adjoint-containing subring thereof) is an FT-ring [3, Theorem 1]. For this ring, C. R. Putnam obtained the following generalization [9, Lemma]: if a_1, a_2 are normal, and $ba_1 = a_2b$, then $ba_1^* = a_2^*b$. A ring with involution, in which the latter theorem holds, will be called a PT-ring.

We denote by A_n the ring of all $n \times n$ matrices $x = (a_{ij})$, $a_{ij} \in A$, provided with the “conjugate-transpose” involution $x^* = (a_{ji}^*)$.

Theorem 1. If A_2 is an FT-ring, then A is a PT-ring.

Proof. Suppose a_1, a_2 are normal elements of A, and $ba_1 = a_2b$. Define

$$x = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}.$$

Clearly x is normal. Moreover,

$$yx = \begin{pmatrix} 0 & 0 \\ ba_1 & 0 \end{pmatrix}, \quad xy = \begin{pmatrix} 0 & 0 \\ a_2b & 0 \end{pmatrix}$$

thus $yx = xy$. Since Fuglede's theorem holds in A_2, $yx^* = x^*y$, in other words $ba_1^* = a_2^*b$.

Example 1. Let A be an involutive (i.e. adjoint-containing) ring of bounded operators acting on a Hilbert space H. Then A_2 is an involutive ring acting on the direct sum of two copies of H. By Fuglede's theorem, A_2 is an FT-ring; thus A is a PT-ring by Theorem 1. This is Putnam's generalization of the Fuglede theorem [9, Lemma]. The argument extends easily to cover the case that a_1, a_2 are possibly unbounded. The result then reads: if $ba_1 \subset a_2b$ then $ba_1^* \subset a_2^*b$.

In the reverse direction, if A is a PT-ring, then Fuglede's theorem

Presented to the Society, August 27, 1958; received by the editors July 28, 1958.
holds for the diagonal normal elements of A_2; we omit the obvious proof:

Theorem 2. If A is a PT-ring, and $a_1, a_2 \in A$ are normal, then the commutant of the normal matrix

$$x = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$$

in A_2 is involutive; that is, the relations $y \in A_2, yx = xy$, imply $yx^* = x^*y$.

A ring A with involution is said to satisfy the *square root axiom* ([6, Chapter VII] in case: given any $a \in A$, there exists a self-adjoint element r such that $r^2 = a^*a$, and such that r is in the double commutant of a^*a (that is, the relation $b(a^*a) = (a^*a)b$ implies $br = rb$).

Examples: any C^*-algebra (see [7, Theorem 26A]); the regular ring of a finite AW*-algebra [1, Corollary 6.2]. Suppose A is a ring satisfying the SR-axiom, and $a \in A$ is invertible. Write $u = ar^{-1}$, where r is the self-adjoint described above; clearly $u^*u = uu^* = 1$. The factorization $a = ur$ is called a “polar decomposition” for a.

Theorem 3. Let A be a PT-ring satisfying the square-root axiom. If a_1, a_2 are similar normal elements, they are unitarily equivalent.

Proof. Suppose $ba_1b^{-1} = a_2$. Then $ba_1 = a_2b$; since A is a PT-ring, $ba_1^* = a_2^*b$, thus $a_1b^* = b^*a_2$. Let $b = ur$ be a polar decomposition. Then a_1 commutes with b^*b; for, $a_1(b^*b) = (a_1b^*)b = (b^*a_2)b = b^*(a_2b) = b^*(ba_1) = (b^*b)a_1$. Hence $a_1r = ra_1$, and $a_2 = ba_1b^{-1} = (ur)a_1(r^{-1}u^*) = ua_1ru^{-1}u^* = ua_1u^*$.

Example 2 (Putnam). If A is the ring of all bounded operators in a Hilbert space, and $a_1, a_2 \in A$ are similar normal operators, then a_1, a_2 are unitarily equivalent by Example 1 and Theorem 3 (see [9, Theorem 1]). The argument works just as well for A any C^*-algebra, the point being that the elements implementing the similarity and unitary equivalence are to be drawn from A.

A ring A with involution is said to possess a *trace* if there exists a mapping $a \rightarrow \text{tr}(a)$ of A into some abelian group, such that (1) $\text{tr}(a + b) = \text{tr}(a) + \text{tr}(b)$, (2) $\text{tr}(ab) = \text{tr}(ba)$, and (3) $\sum a_i a_i = 0$ implies $a_1 = \cdots = a_k = 0$.

Theorem 4. If A is a ring with involution and trace, then A is a PT-ring.

Proof. Since A_n also has a trace, defined for a matrix $x = (a_{ij})$ by the formula $\text{tr}(x) = \sum a_{ii}$, it will suffice by Theorem 1 to show that A is an FT-ring. Suppose x is normal, and $yx = xy$. It must be
shown that $z = yx^* - x^*y$ is 0. We learned the ensuing argument for this from I. Kaplansky. One has

$$zz^* = yx^*xy^* - yx^*y^*x - xy^*xy^* + x^*yy^*x$$

$$= yxx^*y^* - xx^*yy^* + x^*yy^*x$$

Since $\text{tr}(yx^*y^*) = \text{tr}(yx^*y^*x)$, and $\text{tr}(xx^*yy^*) = \text{tr}(x^*yy^*x)$, one has $\text{tr}(zz^*) = 0$, hence $z = 0$.

Example 3. Let A be a commutative ring with involution, such that $\sum a_i^* a_i = 0$ implies $a_1 = \cdots = a_k = 0$, and set $\text{tr}(a) = a$. Then A_n is a PT-ring by Theorem 4.

Example 4. Let Q be the ring of all real quaternions $a = \alpha + \beta i + \gamma j + \delta k$, with involution $a^* = \alpha - \beta i - \gamma j - \delta k$. One has $a^*a = aa^* = \alpha^2 + \beta^2 + \gamma^2 + \delta^2$, so that incidentally every element of Q is normal. Set $\text{tr}(a) = \alpha$. It results from Theorem 4 that Q_n is a PT-ring. This is Putnam’s theorem for finite-dimensional quaternionic Hilbert space, and raises the analogous question for infinite dimension.

Example 5. Let A be a homogeneous AW*-algebra of finite order n, so that $A = Z_n$, where Z is the center of A. Let C be the regular ring of A, W the regular ring of Z; we may identify W with the center of C [1, Theorem 9.2]. Now, W has the properties in Example 3 [1, Lemma 3.4]; since $C = W_n$ [2, concluding remark (2)], it follows that C has a W-valued trace. Thus C is a PT-ring. See Theorem 5 for the generalization to A of finite Type I.

Lemma. Suppose A is the C^*-sum of a family (A_i) of finite AW*-algebras, C is the regular ring of A, and C_i is the regular ring of A_i. Then C is the complete direct sum of the C_i.

Proof. According to [5, §2], A is the set of all families $a = (a_i)$ with $a_i \in A_i$ and $\|a_i\|$ bounded; the operations in A are coordinate-wise. One knows from [5] that A is an AW*-algebra, and is clearly of finite class, so that we may speak of its regular ring C.

Let D be the complete direct sum of the C_i. That is, D is the set of all families $x = (x_i)$ with $x_i \in C_i$, with the coordinatewise operations. By an easy coordinatewise argument, one sees that D is regular. It must be shown that $D = C$.

We may identify A as an involutive subalgebra of D. We shall prove $D = C$ by verifying the criterion of [1, §11]. Suppose $x, y, z \in D$, and $x^*x + y^*y + z^*z = 1$. Then $x_i^*x_i + y_i^*y_i + z_i^*z_i = 1$ for all i, hence $x_i, y_i, z_i \in A_i$; since these elements all have norm ≤ 1, one has $x, y, z \in A$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 5. If A is a finite AW*-algebra of Type I, its regular ring C possesses a center-valued trace. In particular, C is a PT-ring.

Proof. Write A as the C^*-sum of a family (A_i) of homogeneous algebras, and let C_i be the regular ring of A_i. By the Lemma, C is the complete direct sum of the C_i. It follows at once that the center W of C is the complete direct sum of the centers W_i of C_i. According to Example 5, C_i has a W_i-valued trace. Then $(x_i) \rightarrow (\text{tr} x_i)$ defines a W-valued trace on C, thus C is a PT-ring by Theorem 4.

It is reasonable to suppose that C is a PT-ring, for any finite AW*-algebra A; in any case, since A_2 is AW* with regular ring C_2 by [2], it would suffice by Theorem 1 to show that C is an FT-ring.

Corollary. A, C as in Theorem 5. If z_1, z_2 are similar normal elements of C, they are unitarily equivalent.

Proof. C is a PT-ring, with square root axiom [1, Corollary 6.2]; quote Theorem 3.

It results from the corollary that if two normal elements are similar via an unbounded element, they are already similar via a bounded (even unitary) element; in particular, a normal bounded element cannot be similar to a normal unbounded element. Normality is essential here, as is shown by the following example due to Jacob Feldman:

Example 6. Let A be the C^*-sum of denumerably many copies of the algebra K_2 of 2×2 complex matrices. A may be represented as the algebra of all functions $n \rightarrow f(n) \ (n = 1, 2, 3, \ldots)$, with $f(n) \in K_2$, $\|f(n)\|$ bounded, and operations pointwise. Since K_2 is its own regular ring, the regular ring C of A is the algebra of all functions $n \rightarrow f(n)$ with $f(n) \in K_2$. Consider the functions $f, g, h \in C$ defined by

$$f(n) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad g(n) = \begin{pmatrix} 0 & 0 \\ n & 0 \end{pmatrix}, \quad h(n) = \begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix}.$$

Since $h(n)f(n)h(n)^{-1} = g(n)$ for all n, one has $hf^{-1} = g$. Thus f and g are similar in C, even though f is bounded (i.e., is an element of A) and g is not bounded.

2. More on the regular ring. Throughout, C denotes the regular ring of a finite AW*-algebra A (of unrestricted type).

If $x \in C$, and $RP(x) = 1$, then x is invertible. For, $Cx = C$ [1, Corollary 7.1], so there exists $y \in C$ with $yx = 1$; moreover $LP(x) \sim RP(x) = 1$, hence $LP(x) = 1$ by finiteness, $xC = C, xz = 1$ for suitable z. Note that an $x \in C$ is invertible if and only if it is left (right) invertible.

If $x \in C$ is invertible, then x^* is invertible, and $(x^*)^{-1} = (x^{-1})^*$; if moreover x is self-adjoint, so is x^{-1}.
Lemma 1. If \(x \in C, \ x \geq 0, \) and \(x \) is invertible, then \(x^{-1} \geq 0. \)

Proof. Say \(xy = yx = 1, \) and \(x = z^*z \) [1, Definition 6.1]. Then \((yz^*)z = 1\) shows that \(z \) is invertible (see above remarks), hence \(x^{-1} = (z^*z)^{-1} = (z^{-1})(z^{-1})^* \geq 0.\)

Lemma 2. Let \(a \in A, \ 0 \leq a \leq 1, \) and suppose \(a \) has an inverse in \(C. \) Then \(a^{-1} \geq 1. \)

Proof. Say \(ax = xa = 1; \) we know \(x \geq 0 \) from Lemma 1. Write \(x = y^2, \) \(y \) self-adjoint [1, Corollary 6.2]. Since \((ay)y = y(ya) = 1, \) \(y \) is invertible, and \(ay = ya = y^{-1}. \) Then \(a \leq 1, \) \(y^*ay \leq y^*y, \) \(yay \leq y^2, \) \(ay^2 \leq y^2, \) \(ax \leq x, \ 1 \leq x. \)

Theorem 6. Suppose \(x, y \in C, \ 0 \leq x \leq y, \) and \(x \) is invertible. Then \(y \) is invertible, and \(x^{-1} \leq y^{-1} \geq 0. \)

Proof. The relation \(0 \leq x \leq y \) implies \(RP(x) \leq RP(y) \) (see the proof of [1, Corollary 7.6]); by assumption \(RP(x) = 1, \) hence \(RP(y) = 1, \) \(y \) is invertible. Write \(x^{1/2} = wy^{1/2} \) with \(w \in A, \) \(w^*w \leq 1 \) [1, Corollary 7.6]. Then \(w = (x^{1/2})(y^{1/2})^{-1} \) is invertible in \(C, \) hence so is \(w^*w, \) and \((w^*w)^{-1} = (w^{-1})(w^{-1})^* \geq 1 \) by Lemma 2. Since \((x^{1/2})^{-1} = (y^{1/2})^{-1}w^{-1}, \) one has \(x^{-1} = (x^{1/2})^{-1}(x^{1/2})^{-1} = (y^{1/2})^{-1}(w^{-1})(w^{-1})^* \) \((y^{1/2})^{-1} \cdot (y^{1/2})^{-1} = y^{-1}. \) For a similar result of Rellich, see [4, Hilfsatz 4].

Corollary. Suppose \(A \) has the property that every increasingly directed family of self-adjoint elements, which is bounded above, has a least upper bound. Then \(C \) has the same property.

Proof. For ease of notation, we write the proof for sequences. Suppose \(x_i \in C \) are self-adjoint, \(x_1 \leq x_2 \leq x_3 \leq \cdots, \) \(y \in C \) is self-adjoint, and \(x_i \leq y \) for all \(i. \) Adding \(-x_1 \) throughout, we can assume \(0 \leq x_i \leq y. \) Then \(1 \leq 1 + x_1 \leq 1 + x_2 \leq \cdots \leq 1 + y, \) hence by Theorem 6, \(1 \geq (1 + x_1)^{-1} \geq (1 + x_2)^{-1} \geq \cdots \geq (1 + y)^{-1} \geq 0. \) But \((1 + x_i)^{-1} \) and \((1 + y)^{-1} \) belong to \(A \) [1, Lemma 5.1]. Let \(a \in A \) be the greatest lower bound of the \((1 + x_i)^{-1}; \) one has \(0 \leq (1 + y)^{-1} \leq a \leq (1 + x_i)^{-1}. \) By Theorem 6, \(a \) has an inverse in \(C, \) and \(1 + y \geq a^{-1} \geq 1 + x_i. \) Evidently \(a^{-1} - 1 \) is a least upper bound for the \(x_i. \) (Example: \(A \) any finite \(W^* \)-algebra; see [8, Theorem 1].)

Lemma. Let \(z \in C \) be normal, and suppose there exists a complex number \(\lambda \) such that \(z - \lambda \) has an inverse in \(A. \) Then the relations \(a \in A, \) \(az = za, \) imply \(az^* = z^*a. \)

Proof. (We are assuming, so to speak, that the "resolvent set" of \(z \) is nonempty.) Suppose \(a \in A, \) \(az = za. \) Then \(a(z - \lambda) = (z - \lambda)a, \) and \(z - \lambda \) is normal. Changing notation, assume \(z \) invertible, \(z^{-1} \in A, \)
az = za. Then $z^{-1}a = az^{-1}$, hence by Fuglede's theorem $a(z^{-1})^* = (z^{-1})^*a$, $a(z^*)^{-1} = (z^*)^{-1}a$, $z^*a = az^*$.

Theorem 7. Let $z \in C$ be normal, and write $z = x + iy$ with x and y self-adjoint. Suppose there exists a real number α such that $x - \alpha$ (or $y - \alpha$) has an inverse in A. Then the relations $a \in A$, $az = za$, imply $az^* = z^*a$.

Proof. Passing to iz if necessary, we may suppose that it is $x - \alpha$ which has a bounded inverse. Then $(x - \alpha)^{-2} = (x - \alpha)^{-1}(x - \alpha)^{-1} \leq \beta$ for a suitable real number $\beta > 0$. By Theorem 6, $(x - \alpha)^2 \geq 1/\beta > 0$. Since $yx = xy$ by normality, and $z = x - \alpha + iy$, we have $(z - \alpha)^* \cdot (z - \alpha) = (x - \alpha)^2 + y^2 \geq (x - \alpha)^2 \geq 1/\beta > 0$. Hence $(z - \alpha)^*(z - \alpha)$ is invertible, and $(z - \alpha)^{-1}(z - \alpha)^{-1} \leq \beta$. Therefore $(z - \alpha)^{-1} \in A$ [1, Lemma 5.1]; quote the lemma.

A self-adjoint $x \in C$ is **semi-bounded** in case there exists a real number β such that either $x \leq \beta$ or $x \geq \beta$. For instance if $x \in A$ is self-adjoint, then $x \leq \|x\|$. If x is semi-bounded, say $x \geq \beta$, then setting $\alpha = \beta - 1$, one has $x - \alpha \geq 1$, hence $x - \alpha$ has a bounded inverse (Theorem 6, and Lemma 5.1 of [1]). Thus:

Corollary. Let $z \in C$ be normal, and write $z = x + iy$, with x and y self-adjoint. Suppose either x or y is semi-bounded. Then the relations $a \in A$, $az = za$, imply $az^* = z^*a$.

If A has a trace (e.g. if A is Type I, or is a finite W^*-algebra), it is clear that the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. We do not know if every finite AW*-algebra A has this property, but whenever A does, so does C.

Theorem 8. Suppose the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. Then the relations $x \in C$, $x^*x \leq xx^*$, imply $x^*x = xx^*$.

Proof. Suppose $x^*x \leq xx^*$. Write $x = ur$, $r \geq 0$, u unitary [1, Corollary 7.4]. Then $x^*x = r^2$, and $xx^* = ur^2u^* = u(x^*x)u^*$. Setting $s = x^*x$, $t = xx^*$, we have $0 \leq s \leq t$, and s, t are unitarily equivalent. Set $b = (1 + s)^{-1}$, $c = (1 + t)^{-1}$; clearly b, c are unitarily equivalent, in fact $usu^* = t$ yields $ubu^* = c$. Moreover $b \geq c$ by Theorem 6, and b, $c \in A$ [1, Lemma 5.1]. Set $a = b^{1/2}u^*$. Then $aa^* = b^{1/2}u^*ub^{1/2} = b \geq c = ubu^* = a^*a$. By the hypothesis on A, $aa^* = a^*a$, hence $b = c$, and this leads to $s = t$.

Corollary 1. Suppose the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. If $x \in C$, and x commutes with x^*x, then x is normal.

Proof. By assumption $xx^*x = x^*xx$. Right-multiplying by x^*,
$xx*xx*=x*xxx*$. Setting $r=x*x$, $s=xx*$, we have $r \geq 0$, $s \geq 0$, and $s^2=rs$. In particular rs is self-adjoint, so that $rs=rs$. Hence by uniqueness of positive square roots, $s=(s^2)^{1/2}=(rs)^{1/2}=r^{1/2}s^{1/2}$ (see [1, remarks following Definition 6.3]). Then $0 \leq (r^{1/2} - s^{1/2})^2 = r - 2r^{1/2}s^{1/2} + s = r - 2s + s = r - s$, thus $0 \leq s \leq r$. That is, $xx* \leq x*x$, hence $xx*=x*x$ by Theorem 8.

Remark. In an infinite algebra B, choose $x \in B$ with $x*x=1$ but $xx* \neq 1$. Then x commutes with $x*x$, but is not normal.

Corollary 2. Suppose the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. Then every triangular normal matrix in C_n is diagonal.

Proof. Suppose e.g. $n = 3$, and

$$z = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

is a normal element of C_3. From the 1-1 position in the relation $z^*z=zz^*$, one has $a^*a = aa^* + bb^* + cc^*$, thus $a^*a - aa^* = bb^* + cc^* \geq 0$ [1, Theorem 6.1], $aa^* \leq a^*a$. By Theorem 8, $aa^* = a^*a$, hence $b = c = 0$ [1, Lemma 3.4]. Inspection now of the 2-2 position similarly yields $e = 0$. The case for general n is an obvious induction.

Remark. If B is an infinite algebra, there exists a normal (even unitary) matrix

$$x = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

in B_2 with $b \neq 0$. For, choose a partial isometry $a \in A$ with $a^*a = 1$, $aa^* = e \neq 1$, and set $b = 1 - e$, $c = a^*$.

Addenda. (1) I am indebted to J. Dixmier for calling my attention to the references [4] and [8].

(2) Recently M. Rosenblum has given a beautiful proof of the Fuglede-Putnam theorem; for bounded operators, the proof is non-spatial (see [10]).

References

State University of Iowa

A CORRECTION AND IMPROVEMENT OF A THEOREM ON ORDERED GROUPS

PAUL CONRAD

In this note the notation and terminology of [1] will be used throughout. In particular, G will always denote an o-group with well ordered rank. Let P be the multiplicative group of positive rational numbers, and let R be the additive group of real numbers. In [1] the proofs of Theorems 2 and 3 are incorrect. This is a result of the careless formulation of the theorems by the author. Consider the following properties of G.

1. Each component G^γ/G_γ of G has its group of o-automorphisms isomorphic to a subgroup P_γ of P.
2. Each component G^γ/G_γ of G is o-isomorphic to a subgroup D_γ of R, and the only o-automorphisms of D_γ are multiplications by some elements of P.
3. For each pair $\alpha \in \mathfrak{A}$ and $\gamma \in \Gamma$, there exists a pair m, n of positive integers such that $ng\alpha \equiv mg \mod G_\gamma$ for all g in G^γ.

The statements of Theorems 2 and 3 include the hypothesis (1), but (2) and (3) are actually used in the proofs. Clearly (2) implies (1).

Lemma. (a) (2) is independent of the particular choice of D_γ. (b) (2) implies (3). (c) (1) does not imply (2) or (3).

Proof. (a) Let σ be an o-isomorphism of the subgroup A of R onto the subgroup B of R, and suppose that the only o-automorphisms of A are multiplications by some elements of P. If β is an o-automor---

Received by the editors August 1, 1958.