CHARACTERIZATION OF SOME ELEMENTARY
TRANSFORMATIONS

CHIN-SHUI HSÜ

1. Introduction. The purpose of this paper is to study some elementary transformations of surfaces embedded in a 3-dimensional Euclidean space E^3. This will be developed analogously to the following theorem [1]:

Translation Theorem. Given two closed orientable surfaces S, \bar{S} and a homeomorphism $h: S \rightarrow \bar{S}$ such that: (1) each line joining corresponding points is parallel to a fixed direction E, (2) the mean curvatures at corresponding points are equal; moreover S, \bar{S} are assumed not to contain pieces of cylinders in E-direction. Then h is a translation.

All surfaces mentioned will be of class C^2. The notations in [1] will be adopted except that German letters will be replaced by corresponding capital English ones. For example: X, N, H and dA are respectively used to denote the position vector, the unit vector along inward normal direction, the mean curvature and the surface element of a surface S. When a second surface \bar{S} is mentioned, the corresponding quantities are represented by the same letters with bars above them. As in [1], the following formulas will be used:

\begin{align}
 (1.1) & \quad dX \times dX = 2NdA, \\
 (1.2) & \quad dX \times dN = -2HNdA.
\end{align}

A closed nonself-intersecting surface S is said to be convex with respect to a given point 0, (1) if every straight line through 0 meets S at no point, at one point of contact or at two distinct points, (2) if there is a differentiable homeomorphism $f: S \rightarrow S$ such that each straight line joining corresponding points passes through 0.

We intend to prove the following theorems:

Theorem 1. Given two closed orientable surfaces S, \bar{S} and a differentiable homeomorphism $h: S \rightarrow \bar{S}$ such that: (1) each straight line $P\bar{P}$ joining the corresponding points P and \bar{P} passes through a fixed point 0; (2) with 0 as origin, the quantities X, \bar{X}, H, \bar{H} are related to each other either by (i) $\bar{H}X = HX$ throughout S and \bar{S} or by (ii) $\bar{H}X = -HX$ throughout S and \bar{S}. Moreover S, \bar{S} are assumed not to contain pieces of cones with vertex 0. Then h is a homothetic transformation with center 0 and with a
positive or negative constant of proportionality according as (i) or (ii) holds.

Theorem 2. Given two closed orientable surfaces S, \overline{S} and a differentiable homeomorphism $h: S \to \overline{S}$, such that: (1) each segment $ PP $ joining the corresponding points P and \overline{P} subtends a constant angle POP about a fixed point 0, (2) with 0 as origin, HX and \overline{HX} are equal in magnitude. Moreover, S, \overline{S} are assumed not to contain pieces of cones with vertex 0. Then h is a similarity with 0 as center of similitude.

Theorem 3. Given two closed orientable surfaces S, \overline{S} and a differentiable homeomorphism $h: S \to \overline{S}$ such that: (1) each straight line $ PP $ joining corresponding points P and \overline{P} passes through a fixed point 0; (2) with 0 as origin, the quantities $X, \overline{X}, H, \overline{H}$ are related to each other either by (i) $\overline{HHX} = -(H+2X \cdot N/X \cdot X)X$ throughout S and \overline{S}; or by (ii) $\overline{HHX} = (H+2X \cdot N/X \cdot X)X$ throughout S and \overline{S}. Moreover S, \overline{S} are assumed not to contain either pieces of cones with vertex 0 or the point 0 itself. Then h is an inversion with center 0 and with real or pure imaginary radius of inversion according as (i) or (ii) holds.

I am grateful to Professor T. K. Pan for his encouragement during the preparation of this paper.

2. Proofs of theorems.

Proof of Theorem 1. Assume $\overline{HX} = HX$. Write $X = kX$, where $k = H/\overline{H}$.

Case 1. $0 \in S$ and $0 \in \overline{S}$. Then $k \neq 0, \infty$.

\[dX \times d\overline{X} = (kdX + Xdk) \times (kdX + Xdk) = k^2(dX \times dX) + 2k(Xdk \times dX). \]

By (1.1), we have

\[\overline{NdA} = k^2NdA + k(Xdk \times dX), \]

whose scalar product with $\overline{HX} (=HX)$ gives

(2.1) \[(X \cdot \overline{N})\overline{HdA} = k^2(X \cdot N)HdA. \]

Let $a = (N \times X) \cdot dX, b = (\overline{N} \times X) \cdot dX$ and note that $ddX = 0$, then by use of (1.1) and (1.2), we obtain

\[da = 2(X \cdot N)HdA + 2dA, \]
\[db = - X \cdot (d\overline{N} \times dX) + 2(\overline{N} \cdot N)dA \]
\[= (2/k^2)(X \cdot \overline{N})\overline{HdA} + 2(\overline{N} \cdot N)dA \]

since
\[\vec{X} \cdot (d\vec{N} \times d\vec{X}) = k^2 \vec{X} \cdot (d\vec{N} \times dX). \]

Hence, by (2.1) we have

(2.2) \[d(a - b)/2 = (1 - \vec{N} \cdot \vec{N})dA. \]

From Stokes' Theorem, it is evident that

\[\int \int_S (1 - \vec{N} \cdot \vec{N})dA = 0. \]

Since \(1 - \vec{N} \cdot \vec{N} \geq 0 \), and \(dA \) always keeps the same sign, we have

\[1 - \vec{N} \cdot \vec{N} = 0 \]

and therefore

\[\vec{N} = \vec{N}. \]

Moreover, since \(\vec{N} \cdot d\vec{X} = 0, \vec{N} \cdot dX = 0 \), we have

\[(\vec{N} \cdot X)dk = 0. \]

Hence \(k = \text{constant} \), unless \(\vec{N} \cdot X = 0 \).

Let \(R \) be the set of points of \(S \) at which \(\vec{N} \cdot X = 0 \). Then every point of \(R \) (if there is any) is not an interior point; for otherwise, \(S \) would contain a piece of cone with vertex 0. Hence every point of \(R \) is a limiting point of \(S - R \), and, due to the continuity of \(k = H/\vec{H} \),

\[k = \text{constant throughout} \ S. \]

Moreover \(\vec{N} = \vec{N} \) implies that \(k \) is positive.

Consequently \(h \) is a homothetic transformation with center 0 and with positive constant of proportionality.

Case 2. \(0 \in S \) or \(0 \not\in S \). Without loss of generality, we may assume \(0 \in S \). In any open set \(U \) of \(S \) containing 0, take a neighborhood \(V \) of 0. Let \(V' \) be the boundary of \(V \) (and so also of \(S - V \)). Since \((1 - \vec{N} \cdot \vec{N}) \)

\[dA \text{ always keeps the same sign} \]

(2.3) \[\left| \int \int_{s-U} (1 - \vec{N} \cdot \vec{N})dA \right| \leq \left| \int \int_{s-V} (1 - \vec{N} \cdot \vec{N})dA \right|. \]

The expression on the right of (2.3) is equal to

\[\frac{1}{2} \left| \int_{V'} [(\vec{N} - \vec{N}) \times \vec{X}] \cdot dX \right| \]

because of (2.2) and Stokes' Theorem, and it can be made as small as we please by choosing \(V \) small enough, while the expression on the left of (2.3) remains fixed. Hence

\[\int \int_{s-U} (1 - \vec{N} \cdot \vec{N})dA = 0. \]
Following the same argument as in Case 1, we have \(k = \) positive constant in \(S - U \) for every open set \(U \) of \(S \) containing 0. Hence \(k = \) positive constant throughout \(S \), since \(k \) is continuous.

Assume \(\overline{H}X = -HX \). Write \(X = -kX \) where \(k = \frac{H}{\overline{H}} \). Through similar arguments as above, we obtain

\[
\int \int_{S} (1 + \overline{N} \cdot N) dA = 0,
\]

which gives \(\overline{N} = -N \) and therefore \(k = \) positive constant.

Remark 1. Theorem 1 still holds when \(S \) and \(\overline{S} \) are not closed but bounded with boundaries \(B \) and \(\overline{B} \), such that \(h(B) = \overline{B} \) and at corresponding points on \(B \) and \(\overline{B} \), we have \(\overline{N} = N \) for case (i) or \(\overline{N} = -N \) for case (ii). This is evident, because

\[
\int \int_{S} (1 - \overline{N} \cdot N) dA = \frac{1}{2} \int_{B} \left[(N - \overline{N}) \times X \right] \cdot dX \quad \text{for case (i)},
\]

\[
\int \int_{S} (1 + \overline{N} \cdot N) dA = \frac{1}{2} \int_{B} \left[(\overline{N} + N) \times X \right] \cdot dX \quad \text{for case (ii)}.
\]

Remark 2. If we consider the more general condition \(HX = r\overline{H}X \), where \(r \) is a constant, without loss of generality, we may assume \(|r| \leq 1 \). Then instead of (2.2) we get

\[
\frac{1}{2} d(a - rb) = (1 - rN \cdot \overline{N}) dA.
\]

Hence

\[
\int \int_{S} (1 - r\overline{N} \cdot N) dA = 0.
\]

This equation implies

\[
1 - rN \cdot \overline{N} = 0
\]

which is impossible unless \(r = \pm 1 \).

Corollary. Given a closed orientable surface \(S \) convex with respect to a fixed point 0. With 0 as origin, the quantities \(X, H, X', H' \) at points corresponding under \(f \) are related to each other by \(H'X' = -HX \). Then \(S \) is symmetric with respect to 0.

Proof. It is clear that \(f \) satisfies the assumptions in Theorem 1. Hence it is a homothetic transformation with center 0 and with negative constant of proportionality \(k \). Since both \(PP' \) and \(P'(P)' \)
pass through 0, \((P')'\) should be either \(P\) or \(P'\), and since \(f\) is one-one, \((P')' = P\). Hence \(k^2 = 1\), and \(k = 1\). Therefore \(S\) is symmetric with respect to 0.

Proof of Theorem 2. There is a transformation \(g\) in \(E^3\) (which is either a single rotation about an axis through 0 or such a rotation followed by a reflection against a plane through 0), such that each straight line \(0P\) is transformed into \(0P'\) where \(P, P'\) are points corresponding under \(h\).

Let \(S^* = g(S)\). It is clear that \(h^{-1}: S^* \rightarrow \overline{S}\) satisfies the assumptions of Theorem 1, and hence is a homothetic transformation with center 0. Therefore \(h\) is a similarity.

Proof of Theorem 3. Let \(g\) be the inversion about the unit sphere with center 0. Denote by \(X^*, H^*\) and \(N^*\) the position vector, the mean curvature and the unit vector along inward normal direction at \(P^* = g(P)\) of \(S^* = g(S)\), respectively. By simple calculations we obtain

\[
H^*X^* = -\left(H + 2\frac{X \cdot N}{X \cdot X}\right)X,
\]

which reduces to \(H^*X^* = \overline{H}X\) for case (i) and to \(H^*X^* = -HX\) for case (ii). Hence \(h^{-1}: S^* \rightarrow \overline{S}\) is a homothetic transformation with center 0 and with positive or negative constant of proportionality according as (i) or (ii) holds. Thus \(h = (h^{-1})g\) is an inversion about 0, and the radius of inversion is real or pure imaginary according as (i) or (ii) holds.

Remark. Theorem 3 still holds when \(S\) and \(\overline{S}\) are not closed but bounded with boundaries \(B\) and \(\overline{B}\) such that \(h(B) = \overline{B}\) and at corresponding points on the boundaries \(\overline{N} = -N + 2(X \cdot N/X \cdot X)X\) for case (i) or \(\overline{N} = N - 2(X \cdot N/X \cdot X)X\) for case (ii). This is evident because \(N^* = -N + 2(X \cdot N/X \cdot X)X\).

Corollary. If \(S\) is a closed orientable surface convex with respect to a point 0 not on \(S\), and with 0 as origin we have \(H = -(X \cdot N/X \cdot X)X\). Then \(S\) is a sphere with center 0.

Proof. Since \(HX = -(H + 2(X \cdot N/X \cdot X))X\), each point of \(S\) is invariant under the inversion about a sphere with center 0 and with real radius. Consequently, \(S\) itself is a sphere with center 0.

Reference

National Taiwan University, Taiwan, China